We consider federated learning with personalization, where in addition to a global objective, each client is also interested in maximizing a personalized local objective. We consider this problem under a general continuous action space setting where the objective functions belong to a reproducing kernel Hilbert space. We propose algorithms based on surrogate Gaussian process (GP) models that achieve the optimal regret order (up to polylogarithmic factors). Furthermore, we show that the sparse approximations of the GP models significantly reduce the communication cost across clients.
翻译:我们认为,除了一个全球目标外,每个客户都有兴趣最大限度地实现个性化的地方目标。我们从一个通用的持续行动空间来考虑这一问题,其目标功能属于一个复制核心空间的复制者Hilbert空间。我们提出基于替代高森进程(GP)模型的算法,这些模型可以达到最佳的悔恨顺序(直至多式数数系数 ) 。 此外,我们表明,GP模型的稀少近似度大大降低了客户之间的通信成本。