The universal model emerges as a promising trend for medical image segmentation, paving up the way to build medical imaging large model (MILM). One popular strategy to build universal models is to encode each task as a one-hot vector and generate dynamic convolutional layers at the end of the decoder to extract the interested target. Although successful, it ignores the correlations among tasks and meanwhile is too late to make the model 'aware' of the ongoing task. To address both issues, we propose a prompt-driven Universal Segmentation model (UniSeg) for multi-task medical image segmentation using diverse modalities and domains. We first devise a learnable universal prompt to describe the correlations among all tasks and then convert this prompt and image features into a task-specific prompt, which is fed to the decoder as a part of its input. Thus, we make the model 'aware' of the ongoing task early and boost the task-specific training of the whole decoder. Our results indicate that the proposed UniSeg outperforms other universal models and single-task models on 11 upstream tasks. Moreover, UniSeg also beats other pre-trained models on two downstream datasets, providing the community with a high-quality pre-trained model for 3D medical image segmentation. Code and model are available at https://github.com/yeerwen/UniSeg.


翻译:通用模型是医学图像分割领域的一种有前景的趋势,为构建医疗影像大型模型 (MILM) 打下基础。构建通用模型的一种流行策略是将每个任务编码为一位向量,并在解码器结尾处生成动态卷积层来提取目标。虽然成功,但它忽略了任务之间的相关性,同时在使模型“意识到”正在进行的任务方面太晚。为解决这两个问题,我们提出了一个基于提示的通用分割模型 (UniSeg),用于使用不同的模态和域的多任务医学图像分割。我们首先设计了一个可学习的通用提示来描述所有任务之间的相关性,然后将这个提示和图像特征转换为任务特定的提示,作为解码器的一部分输入。因此,我们早早地让模型“意识到”正在进行的任务,并提升了整个解码器的任务特定训练。我们的结果表明,所提出的 UniSeg 在 11 个上游任务上优于其他通用模型和单一任务模型。此外,UniSeg 在两个下游数据集上也超过了其他预训练模型,为社区提供了高质量的预训练模型,用于三维医学图像分割。代码和模型可在 https://github.com/yeerwen/UniSeg 上获得。

0
下载
关闭预览

相关内容

【CVPR2023】BiFormer:基于双层路由注意力的视觉Transformer
专知会员服务
35+阅读 · 2023年3月20日
NeurIPS 2021丨K-Net: 迈向统一的图像分割
专知会员服务
17+阅读 · 2021年11月25日
专知会员服务
15+阅读 · 2021年8月2日
专知会员服务
42+阅读 · 2021年6月6日
一文读懂最强中文NLP预训练模型ERNIE
AINLP
25+阅读 · 2019年10月22日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员