The aim of the present study is to detect abrupt trend changes in the mean of a multidimensional sequential signal. Directly inspired by papers of Fernhead and Liu ([4] and [5]), this work describes the signal in a hierarchical manner : the change dates of a time segmentation process trigger the renewal of a piece-wise constant emission law. Bayesian posterior information on the change dates and emission parameters is obtained. These estimations can be revised online, i.e. as new data arrive. This paper proposes explicit formulations corresponding to various emission laws, as well as a generalization to the case where only partially observed data are available. Practical applications include the returns of partially observed multi-asset investment strategies, when only scant prior knowledge of the movers of the returns is at hand, limited to some statistical assumptions. This situation is different from the study of trend changes in the returns of individual assets, where fundamental exogenous information (news, earnings announcements, controversies, etc.) can be used.
翻译:本研究的目的是检测多层面连续信号值值的突然趋势变化。直接受Fernhead和Liu的论文([4]和[5])直接启发,这项工作以等级方式描述信号:时间分割过程的改变日期触发了片刻不变排放法的更新。获得关于变化日期和排放参数的Bayesian后方信息。这些估算可以在网上进行修改,即随着新数据的到来。本文件提出了与各种排放法相对应的明确表述,并概括了只有部分观察数据的情况。实际应用包括部分观察的多资产投资战略的回报,当时对收益移动者的先前知识极少,仅限于一些统计假设。这种情况不同于对个别资产回报趋势变化的研究,因为可以使用基本外部信息(新闻、收入公告、争议等)。