In this paper, the multi-task learning of lightweight convolutional neural networks is studied for face identification and classification of facial attributes (age, gender, ethnicity) trained on cropped faces without margins. The necessity to fine-tune these networks to predict facial expressions is highlighted. Several models are presented based on MobileNet, EfficientNet and RexNet architectures. It was experimentally demonstrated that they lead to near state-of-the-art results in age, gender and race recognition on the UTKFace dataset and emotion classification on the AffectNet dataset. Moreover, it is shown that the usage of the trained models as feature extractors of facial regions in video frames leads to 4.5% higher accuracy than the previously known state-of-the-art single models for the AFEW and the VGAF datasets from the EmotiW challenges. The models and source code are publicly available at https://github.com/HSE-asavchenko/face-emotion-recognition.


翻译:在本文中,对轻量级神经网络的多任务学习进行了研究,以便面部特征(年龄、性别、族裔)的面部识别和分类,对面部特征进行了没有边际的训练;强调必须对这些网络进行微调,以预测面部表情;根据移动网络、高效Net和RexNet结构,提出了几种模型;实验性地证明,这些模型在UTKFace数据集和AffectNet数据集的情感分类上,在年龄、性别和种族方面接近最先进的结果;此外,还表明,在视频框中使用经过训练的模型作为面部区域的特征提取器,其精确度比以前已知的AFEW和EmotiW挑战中的VGAF数据集的先进单一模型和VGAF数据集高出4.5%;模型和源代码可在https://github.com/HSE-asavchenko/face-emotion-devication上公开查阅。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
18+阅读 · 2019年2月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
20+阅读 · 2020年6月8日
Adversarial Metric Attack for Person Re-identification
A Compact Embedding for Facial Expression Similarity
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
18+阅读 · 2019年2月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员