Malicious advertisement URLs pose a security risk since they are the source of cyber-attacks, and the need to address this issue is growing in both industry and academia. Generally, the attacker delivers an attack vector to the user by means of an email, an advertisement link or any other means of communication and directs them to a malicious website to steal sensitive information and to defraud them. Existing malicious URL detection techniques are limited and to handle unseen features as well as generalize to test data. In this study, we extract a novel set of lexical and web-scrapped features and employ machine learning technique to set up system for fraudulent advertisement URLs detection. The combination set of six different kinds of features precisely overcome the obfuscation in fraudulent URL classification. Based on different statistical properties, we use twelve different formatted datasets for detection, prediction and classification task. We extend our prediction analysis for mismatched and unlabelled datasets. For this framework, we analyze the performance of four machine learning techniques: Random Forest, Gradient Boost, XGBoost and AdaBoost in the detection part. With our proposed method, we can achieve a false negative rate as low as 0.0037 while maintaining high accuracy of 99.63%. Moreover, we devise a novel unsupervised technique for data clustering using K- Means algorithm for the visual analysis. This paper analyses the vulnerability of decision tree-based models using the limited knowledge attack scenario. We considered the exploratory attack and implemented Zeroth Order Optimization adversarial attack on the detection models.
翻译:恶意的广告網址构成一种安全风险,因为它们是网络攻击的来源,而解决这一问题的必要性在行业和学术界都日益增长。一般而言,攻击者通过电子邮件、广告链接或任何其他通信手段向用户提供攻击矢量。根据不同的统计性质,我们使用12个不同的格式化数据集来检测、预测和分类任务。我们扩展了我们的预测分析,以查找不匹配和未贴标签的数据集。关于这个框架,我们分析了四种机器学习技术的性能:随机森林、Gradient Boost、Xoost和AdaBoost在检测中建立欺诈性广告网址探测系统。由6种不同特征组成的组合准确地克服了欺诈性网络分类中的模糊不清之处。根据不同的统计性质,我们使用12个不同的格式化数据集进行检测、预测和分类任务。我们对不匹配和未贴标签的数据集进行了预测分析。关于这个框架,我们分析了四种机器学习技术的性能:随机森林、Gradent Boost、Xoost和AdaBoost在检测中安装了系统化系统。我们利用了一种低级的图像分析方法,我们用了一个低级的精确度分析方法,我们用了一个低级的图像分析方法,我们用了一个低级的模型来进行了一种反位数据分析。我们用了一个低级数据分析。我们用了一个低级的模型来设计方法,我们用了一个低级分析。