Malicious advertisement URLs pose a security risk since they are the source of cyber-attacks, and the need to address this issue is growing in both industry and academia. Generally, the attacker delivers an attack vector to the user by means of an email, an advertisement link or any other means of communication and directs them to a malicious website to steal sensitive information and to defraud them. Existing malicious URL detection techniques are limited and to handle unseen features as well as generalize to test data. In this study, we extract a novel set of lexical and web-scrapped features and employ machine learning technique to set up system for fraudulent advertisement URLs detection. The combination set of six different kinds of features precisely overcome the obfuscation in fraudulent URL classification. Based on different statistical properties, we use twelve different formatted datasets for detection, prediction and classification task. We extend our prediction analysis for mismatched and unlabelled datasets. For this framework, we analyze the performance of four machine learning techniques: Random Forest, Gradient Boost, XGBoost and AdaBoost in the detection part. With our proposed method, we can achieve a false negative rate as low as 0.0037 while maintaining high accuracy of 99.63%. Moreover, we devise a novel unsupervised technique for data clustering using K- Means algorithm for the visual analysis. This paper analyses the vulnerability of decision tree-based models using the limited knowledge attack scenario. We considered the exploratory attack and implemented Zeroth Order Optimization adversarial attack on the detection models.


翻译:恶意的广告網址构成一种安全风险,因为它们是网络攻击的来源,而解决这一问题的必要性在行业和学术界都日益增长。一般而言,攻击者通过电子邮件、广告链接或任何其他通信手段向用户提供攻击矢量。根据不同的统计性质,我们使用12个不同的格式化数据集来检测、预测和分类任务。我们扩展了我们的预测分析,以查找不匹配和未贴标签的数据集。关于这个框架,我们分析了四种机器学习技术的性能:随机森林、Gradient Boost、Xoost和AdaBoost在检测中建立欺诈性广告网址探测系统。由6种不同特征组成的组合准确地克服了欺诈性网络分类中的模糊不清之处。根据不同的统计性质,我们使用12个不同的格式化数据集进行检测、预测和分类任务。我们对不匹配和未贴标签的数据集进行了预测分析。关于这个框架,我们分析了四种机器学习技术的性能:随机森林、Gradent Boost、Xoost和AdaBoost在检测中安装了系统化系统。我们利用了一种低级的图像分析方法,我们用了一个低级的精确度分析方法,我们用了一个低级的图像分析方法,我们用了一个低级的模型来进行了一种反位数据分析。我们用了一个低级数据分析。我们用了一个低级的模型来设计方法,我们用了一个低级分析。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Adversarial Robustness in Cognitive Radio Networks
Arxiv
0+阅读 · 2022年6月14日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关VIP内容
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员