Graph kernels are conventional methods for computing graph similarities. However, most of the R-convolution graph kernels face two challenges: 1) They cannot compare graphs at multiple different scales, and 2) they do not consider the distributions of substructures when computing the kernel matrix. These two challenges limit their performances. To mitigate the two challenges, we propose a novel graph kernel called the Multi-scale Path-pattern Graph kernel (MPG), at the heart of which is the multi-scale path-pattern node feature map. Each element of the path-pattern node feature map is the number of occurrences of a path-pattern around a node. A path-pattern is constructed by the concatenation of all the node labels in a path of a truncated BFS tree rooted at each node. Since the path-pattern node feature map can only compare graphs at local scales, we incorporate into it the multiple different scales of the graph structure, which are captured by the truncated BFS trees of different depth. We use the Wasserstein distance to compute the similarity between the multi-scale path-pattern node feature maps of two graphs, considering the distributions of substructures. We empirically validate MPG on various benchmark graph datasets and demonstrate that it achieves state-of-the-art performance.
翻译:图形内核是计算图形相似性的常规方法。 然而, 革命图形内核大多面临两个挑战:(1) 它们无法在多个不同尺度上比较图表, 2 它们在计算内核矩阵时不考虑子结构的分布。 这两个挑战限制了它们的性能。 为了缓解这两个挑战, 我们提议了一个新的图形内核, 称为多尺度路径式路径式节点图内核( MPG MPG ), 其核心是多尺度路径式路径式节点特征地图。 路径式节点图的每个元素都是节点周围路径式路径阵列的发生次数。 一个路径式模式在计算内核矩阵矩阵矩阵矩阵矩阵矩阵时不考虑子结构的分布。 一个路径- 路径- 路径- 模式模式在位于每个节点根点的宽度 BFS 树的路径中, 我们用瓦塞斯坦式阵列图的距离来测量不同深度阵列的多尺度图 。