Harmonic generalized barycentric coordinates (GBC) functions have been used for cartoon animation since an early work in 2006\cite{JMDGS06}. A computational procedure was further developed in \cite{SH15} for deformation between any two polygons. The bijectivity of the map based on harmonic GBC functions is still murky in the literature. In this paper, we present an elementary proof of the bijection of the harmonic GBC map transforming from one arbitrary polygonal domain $V$ to a convex polygonal domain $W$. This result is further extended to a more general harmonic map from one simply connected domain $V$ to a convex domain $W$ if the harmonic map preserves the orientation of the boundary of the domain $V$. In addition, we shall point out that the harmonic GBC map is also a diffeomorphism over the interior of $V$ to the interior of $W$. Finally, we remark on how to construct a harmonic GBC map from $V$ to $W$ when the number of vertices of $V$ is different from the number of vertices of $W$ and how to construct harmonic GBC functions over a polygonal domain with a hole or holes. We also point out that it is possible to use the harmonic GBC map to deform a nonconvex polygon $V$ to another nonconvex polygon $W$ by a good arrangement of the boundary map between $\partial V$ and $\partial W$. Several numerical deformations based on images are presented to show the effectiveness of the map based on bivariate spline approximation of the harmonic GBC functions.
翻译:自2006年早期工作以来,对动漫动动画使用了通心面的通用巴内中心坐标(GBC)函数。在\ cite{JMGS06} 中进一步开发了一个计算程序,用于任何两个多边形之间的变形。基于调和 GBC 函数的地图双向性在文献中仍然是模糊的。在本文中,我们展示了一个基本证据,证明调和 GBC 地图从一个任意的多边方域 $V$ 转变为一个对等多边方域 $W$。如果调和域 $SH15} 进一步开发了一个更普通的调和图。如果调和一个简单连接的域 $V$到一个 convex 域 $GV 的调和 $BC 美元 的调和 美元的调和 美元的调和 美元的调和值,则显示一个轨道的调和 美元的调和值的调和 美元的调和值的调调调和值的调和值 美元,则显示一个轨道的调调调调调调调调调的调的调调值。