Sparse recovery and subset selection are fundamental problems in varied communities, including signal processing, statistics and machine learning. Herein, we focus on an important greedy algorithm for these problems: Backward Stepwise Regression. We present novel guarantees for the algorithm, propose an efficient, numerically stable implementation, and put forth Stepwise Regression with Replacement (SRR), a new family of two-stage algorithms that employs both forward and backward steps for compressed sensing problems. Prior work on the backward algorithm has proven its optimality for the subset selection problem, provided the residual associated with the optimal solution is small enough. However, the existing bounds on the residual magnitude are NP-hard to compute. In contrast, our main theoretical result includes a bound that can be computed in polynomial time, depends chiefly on the smallest singular value of the matrix, and also extends to the method of magnitude pruning. In addition, we report numerical experiments highlighting crucial differences between forward and backward greedy algorithms and compare SRR against popular two-stage algorithms for compressed sensing. Remarkably, SRR algorithms generally maintain good sparse recovery performance on coherent dictionaries. Further, a particular SRR algorithm has an edge over Subspace Pursuit.
翻译:简单恢复和子集选择是不同社区的根本问题, 包括信号处理、 统计和机器学习。 在此, 我们关注这些问题的重要贪婪算法: 向后步退退退。 我们为算法提供了新的保证, 提出了一个高效的、 数字稳定的实施, 并提出了“ 以替换递减” (SRR), 这是一套新的两阶段递减算法, 既采用前步又采用后步步骤处理压缩遥感问题。 先前关于后向算法的工作已经证明了它对子选择问题的最佳性, 只要与最佳解决办法相关的剩余部分足够小。 然而, 剩余部分的现有界限很难计算。 相比之下, 我们的主要理论结果包括一个可以在多元时间计算的界限, 主要取决于矩阵最小的单值, 并扩展至规模调整方法。 此外, 我们报告数字实验, 强调前向和后向贪婪算法之间的关键差异, 并将SRR相对于压缩感测算法的流行两阶段算法比较。 值得注意的是, SRR算法通常在连贯的磁盘上保持一个细微的子边缘。 。