Standard nodal finite elements in electromagnetic analysis have well-known limitation of occurrence of spurious solution. In order to circumvent the problem, a penalty function method or a regularization method is used with potential formulation. These methods solve the problem partially by pushing the spurious mode to the higher end of the spectrum. But it fails to capture singular eigenvalues in case of the problem domains with sharp edges and corners. To circumvent this limitation, edge elements have been developed for electromagnetic analysis where degree of freedoms are along the edges. But most of the preprocessors develop complex meshes in nodal framework. In this work, we have developed a novel technique to convert nodal data structure to edge data structure for electromagnetic analysis. We have explained the conversion algorithm in details, mentioning associated complexities with relevant examples. The performance of the developed algorithm has been demonstrated extensively with several examples.


翻译:电磁分析中的标准节点限定元素对出现虚假解决方案的发生有众所周知的限制。 为了绕过问题, 使用惩罚功能方法或正规化方法来潜在配方。 这些方法通过将虚假模式推向频谱的较高端来部分解决问题。 但是它没有捕捉到在有尖锐边缘和角的问题领域出现时的单一电子元值。 为了绕过这一限制, 已经为电磁分析开发了边缘元素, 其中自由程度在边缘。 但是大多数预处理器在节点框架中开发了复杂的 meshes。 在这项工作中,我们开发了将节点数据结构转换为边缘数据结构用于电磁分析的新技术。 我们已经详细解释了转换算法, 提到了相关实例的相关复杂性。 已经用几个实例广泛展示了发达算法的性能。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
42+阅读 · 2020年7月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Nature 一周论文导读 | 2019 年 4 月 4 日
科研圈
7+阅读 · 2019年4月14日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
42+阅读 · 2020年7月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Nature 一周论文导读 | 2019 年 4 月 4 日
科研圈
7+阅读 · 2019年4月14日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员