We show that the natural Glauber dynamics mixes rapidly and generates a random proper edge-coloring of a graph with maximum degree $\Delta$ whenever the number of colors is at least $q\geq (\frac{10}{3} + \epsilon)\Delta$, where $\epsilon>0$ is arbitrary and the maximum degree satisfies $\Delta \geq C$ for a constant $C = C(\epsilon)$ depending only on $\epsilon$. For edge-colorings, this improves upon prior work \cite{Vig99, CDMPP19} which show rapid mixing when $q\geq (\frac{11}{3}-\epsilon_0 ) \Delta$, where $\epsilon_0 \approx 10^{-5}$ is a small fixed constant. At the heart of our proof, we establish a matrix trickle-down theorem, generalizing Oppenheim's influential result, as a new technique to prove that a high dimensional simplical complex is a local spectral expander.
翻译:我们显示,天然的冰川动态迅速混合,并产生一个具有最大度$\Delta$(Delta$)的图表的随机适当边色。每当颜色数量至少为$q\geq(\frac{10 ⁇ 3}+\\epsilon)\delta$(Delta$), 美元是任意的, 而对于一个恒定的 $C = C(\\epselon), 最多能满足$\Delta\geC$=C(\efslon) = C(\efslon) 美元。对于边缘色色来说,这比以前的工作\ cite{Vig99, CDMPP19} 有所改进。 当 $q\geq(\crac{11}3}\\\\epslon_0)\delet$(Delta$)\dela$, 其中, 美元能满足$\\\\\ delta\ gecrox 10\ 5}