Quasi-Maximum Likelihood (QML) procedures are theoretically appealing and widely used for statistical inference. While there are extensive references on QML estimation in batch settings, the QML estimation in streaming settings has attracted little attention until recently. An investigation of the convergence properties of the QML procedure in a general conditionally heteroscedastic time series model is conducted, and the classical batch optimization routines extended to the framework of streaming and large-scale problems. An adaptive recursive estimation routine for GARCH models named AdaVol is presented. The AdaVol procedure relies on stochastic approximations combined with the technique of Variance Targeting Estimation (VTE). This recursive method has computationally efficient properties, while VTE alleviates some convergence difficulties encountered by the usual QML estimation due to a lack of convexity. Empirical results demonstrate a favorable trade-off between AdaVol's stability and the ability to adapt to time-varying estimates for real-life data.


翻译:Qasi-Meximum Liblihood(QML)程序在理论上具有吸引力,并广泛用于统计推断。尽管批量设置中大量提到QML估计,但流流环境中的QML估计直到最近才引起注意。调查了一般有条件混凝土时间序列模型中QML程序趋同特性,并将典型的批量优化程序扩大到流和大规模问题的框架。介绍了名为AdaVol的GRCH模型的适应性循环估计程序。AdaVol程序依赖于随机近似,加上差异定向估计技术。这一循环方法具有计算效率,而VTE则减轻了通常的QML估计由于缺乏凝固性而遇到的一些趋同困难。经验性结果显示AdaVol的稳定性与适应实时数据时间变化估计的能力之间有着有利的权衡。

0
下载
关闭预览

相关内容

【2020新书】使用R和Python的高级BI分析,425页pdf
专知会员服务
33+阅读 · 2020年10月14日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Nature 一周论文导读 | 2019 年 2 月 28 日
科研圈
13+阅读 · 2019年3月10日
已删除
将门创投
8+阅读 · 2019年1月30日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2020年12月1日
Arxiv
0+阅读 · 2020年12月1日
Arxiv
0+阅读 · 2020年11月28日
Arxiv
5+阅读 · 2018年1月16日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Nature 一周论文导读 | 2019 年 2 月 28 日
科研圈
13+阅读 · 2019年3月10日
已删除
将门创投
8+阅读 · 2019年1月30日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员