We exhibit examples of high-dimensional unimodal posterior distributions arising in non-linear regression models with Gaussian process priors for which MCMC methods can take an exponential run-time to enter the regions where the bulk of the posterior measure concentrates. Our results apply to worst-case initialised (`cold start') algorithms that are local in the sense that their step-sizes cannot be too large on average. The counter-examples hold for general MCMC schemes based on gradient or random walk steps, and the theory is illustrated for Metropolis-Hastings adjusted methods such as pCN and MALA.
翻译:在非线性回归模型中,我们展示了高山进程前期的高维单式后演法分布的例子,MCMC方法可以用指数运行时间进入后继测量大部分集中的区域。我们的结果适用于本地最差的初始算法(`冷战开始'),因为其步数平均不能过大。基于梯度或随机步行步骤的一般MC方法的反示例,而该理论则用于大都会-Hasting调整方法,如PCN和MALA。