A two-dimensional string is simply a two-dimensional array. We continue the study of the combinatorial properties of repetitions in such strings over the binary alphabet, namely the number of distinct tandems, distinct quartics, and runs. First, we construct an infinite family of $n\times n$ 2D strings with $\Omega(n^{3})$ distinct tandems. Second, we construct an infinite family of $n\times n$ 2D strings with $\Omega(n^{2}\log n)$ distinct quartics. Third, we construct an infinite family of $n\times n$ 2D strings with $\Omega(n^{2}\log n)$ runs. This resolves an open question of Charalampopoulos, Radoszewski, Rytter, Wale\'n, and Zuba [ESA 2020], who asked if the number of distinct quartics and runs in an $n\times n$ 2D string is $\mathcal{O}(n^{2})$.


翻译:二维字符串只是一个二维的阵列。 我们继续研究二维字母上这种字符串中重复的组合属性, 即不同的连字符串数、 不同的夸度和运行。 首先, 我们用$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
【精通OpenCV 4】Mastering OpenCV 4 - Third Edition 随书代码
专知会员服务
40+阅读 · 2019年11月13日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
VIP会员
相关VIP内容
【精通OpenCV 4】Mastering OpenCV 4 - Third Edition 随书代码
专知会员服务
40+阅读 · 2019年11月13日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员