Given a finite set $E$ and an operator $\sigma:2^{E}\longrightarrow2^{E}$, two sets $X,Y\subseteq E$ are \textit{cospanning} if $\sigma\left( X\right) =\sigma\left( Y\right) $. Corresponding \textit{cospanning equivalence relations} were investigated for greedoids in much detail (Korte, Lovasz, Schrader; 1991). For instance, these relations determine greedoids uniquely. In fact, the feasible sets of a greedoid are exactly the inclusion-wise minimal sets of the equivalence classes. In this research, we show that feasible sets of convex geometries are the inclusion-wise maximal sets of the equivalence classes of the corresponding closure operator. Same as greedoids, convex geometries are uniquely defined by the corresponding cospanning relations. For each closure operator $\sigma$, an element $x\in X$ is \textit{an extreme point} of $X$ if $x\notin\sigma(X-x)$. The set of extreme points of $X$ is denoted by $ex(X)$. We prove, that if $\sigma$ has the anti-exchange property, then for every set $X$ its equivalence class $[X]_{\sigma}$ is the interval $[ex(X),\sigma(X)]$. It results in the one-to-one correspondence between the cospanning partitions of an antimatroid and its complementary convex geometry. The obtained results are based on the connection between violator spaces, greedoids, and antimatroids. Cospanning characterization of these combinatorial structures allows us not only to give the new characterization of antimatroids and convex geometries but also to obtain the new properties of closure operators, extreme point operators, and their interconnections.


翻译:根据一个限定值$E 美元和一个操作员$gmam: 2 ⁇ E ⁇ Longright2 ⁇ E} 美元,两套设置为 $X,Y\subseteqee E$是 leftit{crosy} 如果$sgma\left(X\right) {sgma\left(Y\right)$。 对应的textit{closeties} 被详细调查为贪婪( Korte, Lovasz, Schrader; 1991) 。例如,这些关系决定了贪婪。事实上,一种贪婪的可行数据集完全是等同等同类的内含性( Y\right_light_light_lickr_l_lor_lor_l_l_lor_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l____l_____________l_________________________________l_______________________________________l_________________________________________________________l________________________________________________

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2020年6月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月20日
Arxiv
0+阅读 · 2021年9月18日
Arxiv
0+阅读 · 2021年9月17日
Arxiv
0+阅读 · 2021年9月16日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
4+阅读 · 2020年6月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员