This paper studies known indexing structures from a new point of view: minimisation of data exchange between an IoT device acting as a blockchain client and the blockchain server running a protocol suite that includes two Guy Fawkes protocols, PLS and SLVP. The PLS blockchain is not a cryptocurrency instrument; it is an immutable ledger offering guaranteed non-repudiation to low-power clients without use of public key crypto. The novelty of the situation is in the fact that every PLS client has to obtain a proof of absence in all blocks of the chain to which its counterparty does not contribute, and we show that it is possible without traversing the block's Merkle tree. We obtain weight statistics of a leaf path on a sparse Merkle tree theoretically, as our ground case. Using the theory we quantify the communication cost of a client interacting with the blockchain. We show that large savings can be achieved by providing a bitmap index of the tree compressed using Tunstall's method. We further show that even in the case of correlated access, as in two IoT devices posting messages for each other in consecutive blocks, it is possible to prevent compression degradation by re-randomising the IDs using a pseudorandom bijective function. We propose a low-cost function of this kind and evaluate its quality by simulation, using the avalanche criterion.


翻译:本文从一个新的角度研究已知的索引结构: 最小化IoT设备作为连锁客户端与包含两个 Guy Fawkes 协议、 PLS 和 SLVP 协议套件的块链服务器之间的数据交换。 PLS 块链不是一个加密货币工具; 它是一个无法变换的分类账, 向低能力客户提供保证的不可撤销性而不使用公用钥匙加密。 情况的新颖之处在于, 每个 PLS 客户都必须获得一个证据, 证明在其对手无法帮助的链条中的所有块中不存在数据交换; 我们显示, 在不翻转该块的Merkle树上, 这是可能的。 我们从理论上获取一个分散的Merkle树上叶条路的重量统计数据。 我们用一个理论来量化一个客户与链条互动的通信成本。 我们显示, 使用Tunstall 方法提供树木压缩的比特价指数可以实现大量节约。 我们进一步显示, 即使在相关访问的情况下, 在两个 IoT 设备中, 防止该区块的Merkle 树质量 设置一个标准, 我们用一个标准 来使用一个标准 来模拟模型 来显示, 。

0
下载
关闭预览

相关内容

Merkle Tree,通常也被称作Hash Tree,顾名思义,就是存储hash值的一棵树。Merkle树的叶子是数据块(例如,文件或者文件的集合)的hash值。非叶节点是其对应子节点串联字符串的hash。
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月17日
Arxiv
0+阅读 · 2021年9月17日
Arxiv
0+阅读 · 2021年9月16日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年9月17日
Arxiv
0+阅读 · 2021年9月17日
Arxiv
0+阅读 · 2021年9月16日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Arxiv
3+阅读 · 2014年10月9日
Top
微信扫码咨询专知VIP会员