How to obtain an unbiased ranking model by learning to rank with biased user feedback is an important research question for IR. Existing work on unbiased learning to rank (ULTR) can be broadly categorized into two groups -- the studies on unbiased learning algorithms with logged data, namely the \textit{offline} unbiased learning, and the studies on unbiased parameters estimation with real-time user interactions, namely the \textit{online} learning to rank. While their definitions of \textit{unbiasness} are different, these two types of ULTR algorithms share the same goal -- to find the best models that rank documents based on their intrinsic relevance or utility. However, most studies on offline and online unbiased learning to rank are carried in parallel without detailed comparisons on their background theories and empirical performance. In this paper, we formalize the task of unbiased learning to rank and show that existing algorithms for offline unbiased learning and online learning to rank are just the two sides of the same coin. We evaluate six state-of-the-art ULTR algorithms and find that most of them can be used in both offline settings and online environments with or without minor modifications. Further, we analyze how different offline and online learning paradigms would affect the theoretical foundation and empirical effectiveness of each algorithm on both synthetic and real search data. Our findings could provide important insights and guideline for choosing and deploying ULTR algorithms in practice.


翻译:如何通过学习与有偏见的用户反馈进行排名来获得公正的排名模式是IR的一个重要研究问题。 现有的关于公正学习排名(LUTR)的工作可以大致分为两类:关于公正学习算法的研究,包括记录数据,即\ textit{offline}不偏倚的学习;关于公正参数估算的研究,包括实时用户互动,即\ textit{online}学习排名。虽然他们对于\ textit{un beasience} 的定义不同,但这两类LUTR算法有着相同的目标 -- -- 找到根据文件内在相关性或实用性排列文件排名的最佳模式。然而,大多数关于离线和在线不偏倚的排序学习,没有详细比较其背景理论和实绩。在本文件中,我们正式确定不偏倚的学习任务,表明现有的离线不偏倚的学习和在线学习排名的算法只是R的两面。 我们评估了六种最先进的高科技算法算法,发现大部分可以在离线设置和在线选择的理论定位和在线背景分析中,我们如何在进行重要的搜索和不作基础上的重要数据分析。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2020年12月8日
Arxiv
7+阅读 · 2020年9月17日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Arxiv
7+阅读 · 2018年12月26日
Paraphrase Generation with Deep Reinforcement Learning
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员