Accurate estimation of daily rainfall return levels associated with large return periods is needed for a number of hydrological planning purposes, including protective infrastructure, dams, and retention basins. This is especially relevant at small spatial scales. The ERA-5 reanalysis product provides seasonal daily precipitation over Europe on a 0.25 x 0.25 grid (about 27 x 27 km). This translates more than 20,000 land grid points and leads to models with a large number of parameters when estimating return levels. To bypass this abundance of parameters, we build on the regional frequency analysis (RFA), a well-known strategy in statistical hydrology. This approach consists in identifying homogeneous regions, by gathering locations with similar distributions of extremes up to a normalizing factor and developing sparse regional models. In particular, we propose a step-by-step blueprint that leverages a recently developed and fast clustering algorithm to infer return level estimates over large spatial domains. This enables us to produce maps of return level estimates of ERA-5 reanalysis daily precipitation over continental Europe for various return periods and seasons. We discuss limitations and practical challenges and also provide a git hub repository. We show that a relatively parsimonious model with only a spatially varying scale parameter can compete well against statistical models of higher complexity.


翻译:为了若干水文规划目的,包括保护性基础设施、水坝和保留盆地,需要准确估计与大返回期有关的每日降雨回流水平,包括保护性基础设施、水坝和保留盆地。这在空间尺度上特别相关。ERA-5再分析产品以0.25x0.25电网(约27x27公里)提供欧洲的季节性每日降雨量(每天0.25x0.25电网)(约27x27公里),这意味着20,000多个陆地网网点,并导致在估计返回水平时产生具有大量参数的模型。为了绕过这一丰富的参数,我们以区域频率分析(区域频率分析)这一众所周知的统计水文战略为基础。这种方法包括确定同一区域,将极端分布分布相似的地点集中到一个正常化的因素,并开发稀少的区域模型。特别是,我们提出了一个逐步的蓝图,利用最近开发的快速组合算法来推导出大空间域的返回水平估计数。这使我们能够绘制ERA-5对大陆各返回期和季节的每日降水量进行重新分析的返回水平估计的地图。我们讨论局限性和实际挑战,还可以提供一个 git 中枢纽储存库。我们展示了相对较高的模型,只有空间上不同比例的复杂程度的统计模型。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
神器Cobalt Strike3.13破解版
黑白之道
12+阅读 · 2019年3月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月8日
Arxiv
0+阅读 · 2022年2月6日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
CVPR 2019 | 重磅!34篇 CVPR2019 论文实现代码
AI研习社
11+阅读 · 2019年6月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
神器Cobalt Strike3.13破解版
黑白之道
12+阅读 · 2019年3月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员