Accurate estimation of daily rainfall return levels associated with large return periods is needed for a number of hydrological planning purposes, including protective infrastructure, dams, and retention basins. This is especially relevant at small spatial scales. The ERA-5 reanalysis product provides seasonal daily precipitation over Europe on a 0.25 x 0.25 grid (about 27 x 27 km). This translates more than 20,000 land grid points and leads to models with a large number of parameters when estimating return levels. To bypass this abundance of parameters, we build on the regional frequency analysis (RFA), a well-known strategy in statistical hydrology. This approach consists in identifying homogeneous regions, by gathering locations with similar distributions of extremes up to a normalizing factor and developing sparse regional models. In particular, we propose a step-by-step blueprint that leverages a recently developed and fast clustering algorithm to infer return level estimates over large spatial domains. This enables us to produce maps of return level estimates of ERA-5 reanalysis daily precipitation over continental Europe for various return periods and seasons. We discuss limitations and practical challenges and also provide a git hub repository. We show that a relatively parsimonious model with only a spatially varying scale parameter can compete well against statistical models of higher complexity.
翻译:为了若干水文规划目的,包括保护性基础设施、水坝和保留盆地,需要准确估计与大返回期有关的每日降雨回流水平,包括保护性基础设施、水坝和保留盆地。这在空间尺度上特别相关。ERA-5再分析产品以0.25x0.25电网(约27x27公里)提供欧洲的季节性每日降雨量(每天0.25x0.25电网)(约27x27公里),这意味着20,000多个陆地网网点,并导致在估计返回水平时产生具有大量参数的模型。为了绕过这一丰富的参数,我们以区域频率分析(区域频率分析)这一众所周知的统计水文战略为基础。这种方法包括确定同一区域,将极端分布分布相似的地点集中到一个正常化的因素,并开发稀少的区域模型。特别是,我们提出了一个逐步的蓝图,利用最近开发的快速组合算法来推导出大空间域的返回水平估计数。这使我们能够绘制ERA-5对大陆各返回期和季节的每日降水量进行重新分析的返回水平估计的地图。我们讨论局限性和实际挑战,还可以提供一个 git 中枢纽储存库。我们展示了相对较高的模型,只有空间上不同比例的复杂程度的统计模型。