A graph whose nodes have degree 1 or 3 is called a $\{1,3\}$-graph. Liu and Osserman associated a polytope to each $\{1,3\}$-graph and studied the Ehrhart quasi-polynomials of these polytopes. They showed that the vertices of these polytopes have coordinates in the set $\{0,\frac14,\frac12,1\}$, which implies that the period of their Ehrhart quasi-polynomials is either 1, 2, or 4. We show that the period of the Ehrhart quasi-polynomial of these polytopes is at most 2 if the graph is a tree or a cubic graph, and it is equal to 4 otherwise. In the process of proving this theorem, several interesting combinatorial and geometric properties of these polytopes were uncovered, arising from the structure of their associated graphs. The tools developed here may find other applications in the study of Ehrhart quasi-polynomials and enumeration problems for other polytopes that arise from graphs. Additionally, we have identified some interesting connections with triangulations of 3-manifolds.
翻译:其节点为 1 或 3 的图名为 $1,3 $1,3 美元。 刘氏和奥瑟曼将这些多面形的多元形与每 $1,3 $1,3 美元相联, 并研究了这些多面形的Ehrhart 准极- Polynomial。 它们表明, 这些多面形的顶点的顶点在 $0,\ frac14,\frac12,1 $1 中具有座标。 这表明, 其半极- polomial 的时期为 1, 2 或 4. 我们显示, 这些多面形形形体的 Ehrhart 准极- pol- polomial 期最多为 2, 如果该年是一棵树或立方形图, 则等于 4 。 在验证这个顶点时, 发现这些多面形形形形形形体的一些有趣的组合和几何特性性特性。 这里开发的工具可以在 Ehrhart 准极研究中找到其它应用 。 此外, 我们确定了与图形的三角 3 。