Synthetic data construction of Grammatical Error Correction (GEC) for non-English languages relies heavily on human-designed and language-specific rules, which produce limited error-corrected patterns. In this paper, we propose a generic and language-independent strategy for multilingual GEC, which can train a GEC system effectively for a new non-English language with only two easy-to-access resources: 1) a pretrained cross-lingual language model (PXLM) and 2) parallel translation data between English and the language. Our approach creates diverse parallel GEC data without any language-specific operations by taking the non-autoregressive translation generated by PXLM and the gold translation as error-corrected sentence pairs. Then, we reuse PXLM to initialize the GEC model and pretrain it with the synthetic data generated by itself, which yields further improvement. We evaluate our approach on three public benchmarks of GEC in different languages. It achieves the state-of-the-art results on the NLPCC 2018 Task 2 dataset (Chinese) and obtains competitive performance on Falko-Merlin (German) and RULEC-GEC (Russian). Further analysis demonstrates that our data construction method is complementary to rule-based approaches.


翻译:在本文件中,我们提出了多语制全球教育中心通用和语言独立战略,为新的非英语语言有效培训全球教育中心系统,只有两种容易获取的资源:(1) 预先培训的跨语言语言模式(PXLM)和(2) 英语和语言之间的平行翻译数据。我们的方法通过将PXLM和黄金翻译产生的非视觉性翻译作为错误校正的对子,在没有任何语言操作的情况下创建了不同的平行全球教育中心数据。然后,我们重新使用PXLM, 以启动全球教育中心模式,并用自己生成的合成数据对其进行预设,从而取得进一步改进。我们用不同语言评估全球教育中心三个公共基准的方法。它实现了基于NLPCC 2018任务2数据集(中国)的最新成果,并获得了Falko-Merlin(德国)和黄金翻译作为错误校正法-俄罗斯规则(俄罗斯规则)的进一步数据分析。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员