We propose improved fixed-design confidence bounds for the linear logistic model. Our bounds significantly improve upon the state-of-the-art bound by Li et al. (2017) via recent developments of the self-concordant analysis of the logistic loss (Faury et al., 2020). Specifically, our confidence bound avoids a direct dependence on $1/\kappa$, where $\kappa$ is the minimal variance over all arms' reward distributions. In general, $1/\kappa$ scales exponentially with the norm of the unknown linear parameter $\theta^*$. Instead of relying on this worst-case quantity, our confidence bound for the reward of any given arm depends directly on the variance of that arm's reward distribution. We present two applications of our novel bounds to pure exploration and regret minimization logistic bandits improving upon state-of-the-art performance guarantees. For pure exploration, we also provide a lower bound highlighting a dependence on $1/\kappa$ for a family of instances.


翻译:我们建议改善线性后勤模式的固定设计信任度。我们通过最近对后勤损失进行自我协调分析(Foury等人,2020年),大大改进了Li等人(2017年)所约束的最新技术水平(2017年),具体地说,我们的信任度避免直接依赖1美元/卡帕(Kappa)美元,因为Kappa美元是所有军备奖励分配的最小差异。一般而言,1美元/卡帕(Kappa)美元与未知线性参数的规范($\theta ⁇ $)成倍增长。我们对任何特定手臂的奖赏所约束的信任直接取决于该手臂报酬分配的差异。我们提出了我们两个新的界限,以纯粹勘探为目的,并遗憾最大限度地减少利用最先进的业绩保证的后勤匪徒。关于纯度的勘探,我们还提供了一个家庭对1美元/卡帕($)的依赖度较低。

0
下载
关闭预览

相关内容

【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
已删除
将门创投
3+阅读 · 2020年8月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Logistic回归第一弹——二项Logistic Regression
机器学习深度学习实战原创交流
3+阅读 · 2015年10月22日
Arxiv
0+阅读 · 2021年5月10日
Arxiv
0+阅读 · 2021年5月5日
Arxiv
0+阅读 · 2021年5月4日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
3+阅读 · 2020年8月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Logistic回归第一弹——二项Logistic Regression
机器学习深度学习实战原创交流
3+阅读 · 2015年10月22日
Top
微信扫码咨询专知VIP会员