Energy-Based Models (EBMs) present a flexible and appealing way to represent uncertainty. Despite recent advances, training EBMs on high-dimensional data remains a challenging problem as the state-of-the-art approaches are costly, unstable, and require considerable tuning and domain expertise to apply successfully. In this work, we present a simple method for training EBMs at scale which uses an entropy-regularized generator to amortize the MCMC sampling typically used in EBM training. We improve upon prior MCMC-based entropy regularization methods with a fast variational approximation. We demonstrate the effectiveness of our approach by using it to train tractable likelihood models. Next, we apply our estimator to the recently proposed Joint Energy Model (JEM), where we match the original performance with faster and stable training. This allows us to extend JEM models to semi-supervised classification on tabular data from a variety of continuous domains.
翻译:以能源为基础的模型(EBMs)为代表不确定性提供了一个灵活和有吸引力的方法。尽管最近取得了一些进展,但高维数据培训EBM仍是一个具有挑战性的问题,因为最先进的方法成本高、不稳定,需要大量的调整和领域专门知识才能成功应用。在这项工作中,我们提出了一个简单的方法,用于对EBM进行大规模培训,即使用一个加密、正规化的发电机来对通常用于EBM培训的MCMC取样进行摊合。我们改进了以前以MCMC为基础的对流方法,并有一个快速的变异近点。我们通过使用它来培训可移动的可能性模型,展示了我们的方法的有效性。接下来,我们将我们的估算器应用到最近提出的联合能源模型(JEM)中,我们在该模型中,我们把最初的性能与更快和稳定的培训相匹配。这使我们能够将正义运动模型扩大到对各种连续领域的表格数据进行半监督的分类。