In a previous work, we proposed a geometric framework to study a deep neural network, seen as sequence of maps between manifolds, employing singular Riemannian geometry. In this paper, we present an application of this framework, proposing a way to build the class of equivalence of an input point: such class is defined as the set of the points on the input manifold mapped to the same output by the neural network. In other words, we build the preimage of a point in the output manifold in the input space. In particular. we focus for simplicity on the case of neural networks maps from n-dimensional real spaces to (n - 1)-dimensional real spaces, we propose an algorithm allowing to build the set of points lying on the same class of equivalence. This approach leads to two main applications: the generation of new synthetic data and it may provides some insights on how a classifier can be confused by small perturbation on the input data (e.g. a penguin image classified as an image containing a chihuahua). In addition, for neural networks from 2D to 1D real spaces, we also discuss how to find the preimages of closed intervals of the real line. We also present some numerical experiments with several neural networks trained to perform non-linear regression tasks, including the case of a binary classifier.
翻译:在先前的一项工作中,我们提出了一个几何框架,用于研究深神经网络,它被视作是使用单一Riemannian几何学的元体之间的地图序列。在本文中,我们提出了一个应用这一框架的方法,提出如何构建一个输入点的等值等级:这类类被定义为神经网络为同一输出而绘制的输入元数的一组点。换句话说,我们建构输入空间输出元体中一个点的预感。特别是,我们侧重于简单处理神经网络地图从正维实际空间到(n - 1)维实际空间的情况。此外,我们建议一种算法,允许构建位于同一等同类别上的一组点。这个方法导致两个主要应用:生成新的合成数据,它可能提供一些洞察力,说明如何通过对输入数据进行小幅的扰动来混淆一个分类器(例如,企鹅图像被归类为含有奇华华) 。此外,对于从正维实际空间到正维空间(n - 1) 的神经网络,我们还提出一个算法,允许构建一个位于同一等等等等的一组点。这个方法可以导致两种主要应用:即生成新的合成数据,我们进行一些经过训练的硬化的硬化模型实验。