In a previous work, we proposed a geometric framework to study a deep neural network, seen as sequence of maps between manifolds, employing singular Riemannian geometry. In this paper, we present an application of this framework, proposing a way to build the class of equivalence of an input point: such class is defined as the set of the points on the input manifold mapped to the same output by the neural network. In other words, we build the preimage of a point in the output manifold in the input space. In particular. we focus for simplicity on the case of neural networks maps from n-dimensional real spaces to (n - 1)-dimensional real spaces, we propose an algorithm allowing to build the set of points lying on the same class of equivalence. This approach leads to two main applications: the generation of new synthetic data and it may provides some insights on how a classifier can be confused by small perturbation on the input data (e.g. a penguin image classified as an image containing a chihuahua). In addition, for neural networks from 2D to 1D real spaces, we also discuss how to find the preimages of closed intervals of the real line. We also present some numerical experiments with several neural networks trained to perform non-linear regression tasks, including the case of a binary classifier.


翻译:在先前的一项工作中,我们提出了一个几何框架,用于研究深神经网络,它被视作是使用单一Riemannian几何学的元体之间的地图序列。在本文中,我们提出了一个应用这一框架的方法,提出如何构建一个输入点的等值等级:这类类被定义为神经网络为同一输出而绘制的输入元数的一组点。换句话说,我们建构输入空间输出元体中一个点的预感。特别是,我们侧重于简单处理神经网络地图从正维实际空间到(n - 1)维实际空间的情况。此外,我们建议一种算法,允许构建位于同一等同类别上的一组点。这个方法导致两个主要应用:生成新的合成数据,它可能提供一些洞察力,说明如何通过对输入数据进行小幅的扰动来混淆一个分类器(例如,企鹅图像被归类为含有奇华华) 。此外,对于从正维实际空间到正维空间(n - 1) 的神经网络,我们还提出一个算法,允许构建一个位于同一等等等等的一组点。这个方法可以导致两种主要应用:即生成新的合成数据,我们进行一些经过训练的硬化的硬化模型实验。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
28+阅读 · 2021年8月2日
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
6+阅读 · 2017年7月6日
Arxiv
4+阅读 · 2017年1月2日
VIP会员
相关VIP内容
专知会员服务
28+阅读 · 2021年8月2日
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
6+阅读 · 2017年7月6日
Top
微信扫码咨询专知VIP会员