Network analysis and machine learning techniques have been widely applied for building malware detection systems. Though these systems attain impressive results, they often are $(i)$ not extensible, being monolithic, well tuned for the specific task they have been designed for but very difficult to adapt and/or extend to other settings, and $(ii)$ not interpretable, being black boxes whose inner complexity makes it impossible to link the result of detection with its root cause, making further analysis of threats a challenge. In this paper we present RADAR, an extensible and explainable system that exploits the popular TTP (Tactics, Techniques, and Procedures) ontology of adversary behaviour described in the industry-standard MITRE ATT\&CK framework in order to unequivocally identify and classify malicious behaviour using network traffic. We evaluate RADAR on a very large dataset comprising of 2,286,907 malicious and benign samples, representing a total of 84,792,452 network flows. The experimental analysis confirms that the proposed methodology can be effectively exploited: RADAR's ability to detect malware is comparable to other state-of-the-art non-interpretable systems' capabilities. To the best of our knowledge, RADAR is the first TTP-based system for malware detection that uses machine learning while being extensible and explainable.


翻译:RADAR: 一种基于TTP的可扩展、可解释和有效的网络流量分析和恶意软件检测系统 翻译后的摘要: 网络分析和机器学习技术已经被广泛应用于构建恶意软件检测系统。虽然这些系统取得了令人瞩目的结果,但它们通常 $(i)$ 不可扩展,是单一的、为特定任务进行了精细调整的系统,但很难适应和/或扩展到其他设置,以及 $(ii)$ 不可解释,是黑盒子,其内在复杂性使得将检测结果与其根本原因联系起来变得不可能,进一步分析威胁成为一项挑战。本文提出了RADAR, 一种可扩展和可解释的系统,它利用了协议的 TTP (战术、技术和过程) 本体论述中描述的对手行为,在使用网络流量时不含糊地标识和分类恶意行为。我们在一个非常大的数据集上对RADAR进行了评估,包括2,286,907个恶意和良性的样本,表示总共的84,792,452个网络流量。实验分析证实所提出的方法可以有效地利用: RADAR检测恶意软件的能力与其他最先进的不可解释系统的能力相当。据我们所知,RADAR是第一个使用机器学习,同时具有可扩展性和可解释性的基于TTP的恶意软件检测系统。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IJCAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
IJCAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年5月20日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员