The 3-coloring of hereditary graph classes has been a deeply-researched problem in the last decade. A hereditary graph class is characterized by a (possibly infinite) list of minimal forbidden induced subgraphs $H_1,H_2,\ldots$; the graphs in the class are called $(H_1,H_2,\ldots)$-free. The complexity of 3-coloring is far from being understood, even for classes defined by a few small forbidden induced subgraphs. For $H$-free graphs, the complexity is settled for any $H$ on up to seven vertices. There are only two unsolved cases on eight vertices, namely $2P_4$ and $P_8$. For $P_8$-free graphs, some partial results are known, but to the best of our knowledge, $2P_4$-free graphs have not been explored yet. In this paper, we show that the 3-coloring problem is polynomial-time solvable on $(2P_4,C_5)$-free graphs.
翻译:遗传图类的3色在过去十年中是一个深层研究的问题。 遗传图类的特征是( 可能是无限的) 最低禁止诱导子集列表 $H_ 1, H_ 2,\ldots$; 该类的图表称为$( H_ 1, H_ 2,\ldots) $free。 3色的复杂性远非人们所理解, 即使是一些小的禁止诱导子组定义的类别也是如此。 $- h$- free 图形的复杂性已经解决了, 任何H$的复杂性都高达7个悬盘。 8个脊椎上只有两个未解的病例, 即 2P_ 4美元 和 $P_ 8 美元。 对于 $P_ 8 免费的图表, 某些部分结果是已知的, 但据我们所知, 2P_ 4 $- free 图表还没有被探索。 在本文中, 我们显示, 3色问题是多时可溶于$( 2P_ 4, C_ 5) 。