In order to retain more feature information of local areas on a point cloud, local grouping and subsampling are the necessary data structuring steps in most hierarchical deep learning models. Due to the disorder nature of the points in a point cloud, the significant time cost may be consumed when grouping and subsampling the points, which consequently results in poor scalability. This paper proposes a fast data structuring method called PSNet (Point Structuring Net). PSNet transforms the spatial features of the points and matches them to the features of local areas in a point cloud. PSNet achieves grouping and sampling at the same time while the existing methods process sampling and grouping in two separate steps (such as using FPS plus kNN). PSNet performs feature transformation pointwise while the existing methods uses the spatial relationship among the points as the reference for grouping. Thanks to these features, PSNet has two important advantages: 1) the grouping and sampling results obtained by PSNet is stable and permutation invariant; and 2) PSNet can be easily parallelized. PSNet can replace the data structuring methods in the mainstream point cloud deep learning models in a plug-and-play manner. We have conducted extensive experiments. The results show that PSNet can improve the training and inference speed significantly while maintaining the model accuracy.
翻译:为了在点云中保留更多局部地区的特征信息,本地分组和子抽样是大多数等级深层次学习模型中必要的数据结构步骤。由于点云中点的混乱性质,在对点子进行分组和子抽样时,可能会花费大量的时间成本,从而导致不易缩放。本文件建议采用称为PSNet(点结构网)的快速数据结构方法。PSNet转换了点的空间特征,并将其与点云中的地方特征相匹配。PSNet同时进行分组和取样,而现有的方法则在两个不同的步骤中(例如使用FPS+ kNN)进行取样和分类。PSNet进行地貌变换,而现有的方法则使用各点之间的空间关系作为分组的参考。由于这些特点,PSNet有两个重要优势:(1) PSNet获得的组合和抽样模型是稳定的,在变异性中与当地特征相匹配;和(2) PSNet可以很容易地同时进行分组和取样,同时以两种不同步骤进行取样。PSNet可以大大地取代数据结构模型,我们在模型中进行深度分析时,我们可以大幅度地展示。