In this paper, we present Tetris, a new task of Goal-Oriented Script Completion. Unlike previous work, it considers a more realistic and more general setting, where the input includes not only the goal but also additional user context, including preferences and history. To address the problem using a knowledge-based approach, we introduce Task Concept Graph, an automatically constructed knowledge base from instructional websites. Different from Commonsense Knowledge Base like ConceptNet, the task concept graph schema introduces various types of noun phrases-based nodes specifically for accomplishing a task. To integrate such graphs into script learning, we devise two methods that acquire concepts from the knowledge base as prompts to downstream script completion. On our WikiHow-based dataset, we find that incorporating concepts from the Task Concept Graph consistently improves performance, demonstrating the benefit of Task Concept Graph for this task. Furthermore, the model with gold-standard concepts as prompt outperforms the baseline significantly, further confirming the need for task-specific knowledge in goal-oriented script completion. The dataset, repository, models, and demo will be publicly available to facilitate further research on this new task.
翻译:在本文中,我们展示了基于目标的文稿完成的新任务。 与以往的工作不同, 它认为这是一个更加现实和更加一般的设置, 投入不仅包括目标, 还包括额外的用户背景, 包括偏好和历史。 为了使用基于知识的方法解决这个问题, 我们引入了任务概念图, 这是从指导性网站自动构建的知识库。 不同于概念网等常识知识库, 任务概念图Schema 引入了各种类型的基于名词的结点, 具体用于完成一项任务。 为了将这些图表纳入脚本学习, 我们设计了两种方法, 从知识库获取概念, 即快速到下游的脚本完成。 在基于WikiHow的数据集中, 我们发现, 从任务概念图中整合概念可以不断改进业绩, 展示任务概念图对这项任务的好处。 此外, 与黄金标准概念有关的模型, 快速超越了基准, 进一步确认在以目标为导向的文稿完成中需要特定任务的知识。 数据集、 存储器、 模型和演示品将公开提供, 以便利进一步研究这项新任务。