This paper presents a new approach to the classical problem of quantifying posterior contraction rates (PCRs) in Bayesian statistics. Our approach relies on Wasserstein distance, and it leads to two main contributions which improve on the existing literature of PCRs. The first contribution exploits the dynamic formulation of Wasserstein distance, for short referred to as Wasserstein dynamics, in order to establish PCRs under dominated Bayesian statistical models. As a novelty with respect to existing approaches to PCRs, Wasserstein dynamics allows us to circumvent the use of sieves in both stating and proving PCRs, and it sets forth a natural connection between PCRs and three well-known classical problems in statistics and probability theory: the speed of mean Glivenko-Cantelli convergence, the estimation of weighted Poincar\'e-Wirtinger constants and Sanov large deviation principle for Wasserstein distance. The second contribution combines the use of Wasserstein distance with a suitable sieve construction to establish PCRs under full Bayesian nonparametric models. As a novelty with respect to existing literature of PCRs, our second result provides with the first treatment of PCRs under non-dominated Bayesian models. Applications of our results are presented for some classical Bayesian statistical models, e.g., regular parametric models, infinite-dimensional exponential families, linear regression in infinite dimension and nonparametric models under Dirichlet process priors.
翻译:本文介绍了对巴伊西亚统计中事后收缩率(PCRs)进行量化的典型问题的一种新方法。我们的方法依赖于瓦瑟斯坦距离,它导致两个主要贡献,改进了PCR的现有文献。第一种贡献利用了瓦瑟斯坦距离动态的动态配方,简称瓦瑟斯坦动态,以便在占支配地位的巴伊西亚统计模型下建立PCR。作为现有PCR方法的一种新颖做法,瓦塞尔斯坦动态使我们得以绕过在声明和证明PCR两个模型中使用Sieves的假象,在PCRs和三个众所周知的统计和概率理论方面古老问题之间建立了自然联系:Glivenko-Cantelli之间的平均趋同速度、加权Pincar\'e-Wirtinger常数的估计和对瓦瑟斯坦距离的Sanov大偏差原则。第二种贡献结合了使用瓦瑟斯坦距离和适当的Sive构建在全面巴伊西亚非偏差模型下建立PCRs。作为现有不直线性模型的原始模型,在现有的PCRI-CRS格式模型下提供了我们现有的不直观的统计模型下的一些结果。