We answer an open complexity question by Hofman, Lasota, Mayr, Totzke (LMCS 2016) for simulation preorder on the class of succinct one-counter nets (i.e., one-counter automata with no zero tests where counter increments and decrements are integers written in binary); the problem was known to be PSPACE-hard and in EXPSPACE. We show that all relations between bisimulation equivalence and simulation preorder are EXPSPACE-hard for these nets; simulation preorder is thus EXPSPACE-complete. The result is proven by a reduction from reachability games whose EXPSPACE-completeness in the case of succinct one-counter nets was shown by Hunter (RP 2015), by using other results. We also provide a direct self-contained EXPSPACE-completeness proof for a special case of such reachability games, namely for a modification of countdown games that were shown EXPTIME-complete by Jurdzinski, Sproston, Laroussinie (LMCS 2008); in our modification the initial counter value is not given but is freely chosen by the first player. We also present an alternative proof for the upper bound by Hofman et al. In particular, we give a new simplified proof of the belt theorem that yields a simple graphic presentation of simulation preorder on (non-succinct) one-counter nets and leads to a polynomial-space algorithm (which is trivially extended to an exponential-space algorithm for succinct one-counter nets).


翻译:我们回答Hofman、Lasota、Mayr、Totzke(LMCS 2016)提出的一个公开复杂问题,即对简明的单人网类进行模拟预购(即单人自动自动自动测试,在二进制书写反增量和衰减为整数的情况下,单人自动自动测试);这个问题已知为PSPACE硬和EXPSPACE。我们表明,对于这些网来说,减缩等同和模拟预购之间的所有关系都是 EXPSPACE-硬的;因此,模拟预购是 EXPSPACE 的完成。 其结果证明是,从简单单人网类网类的可达标游戏(即单人自动自动自动自动自动自动自动测试) 的可达标码游戏减少了可达性游戏的可达性。

0
下载
关闭预览

相关内容

计算机科学中的逻辑方法是一种完全开放存取的、免费的电子期刊。委员会欢迎就涉及广义逻辑方法的计算机科学理论和实践领域发表的论文。论文以传统的方式进行评审,每张论文有两个或更多的评审。版权归作者所有。官网链接:https://lmcs.episciences.org/
专知会员服务
38+阅读 · 2021年9月7日
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
专知会员服务
123+阅读 · 2020年9月8日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月12日
Arxiv
4+阅读 · 2021年7月1日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员