Following up on purely theoretical work of Bredereck et al. [AAAI 2020], we contribute further theoretical insights into adapting stable two-sided matchings to change. Moreover, we perform extensive empirical studies hinting at numerous practically useful properties. Our theoretical extensions include the study of new problems (that is, incremental variants of Almost Stable Marriage and Hospital Residents), focusing on their (parameterized) computational complexity and the equivalence of various change types (thus simplifying algorithmic and complexity-theoretic studies for various natural change scenarios). Our experimental findings reveal, for instance, that allowing the new matching to be blocked by a few pairs significantly decreases the necessary differences between the old and the new stable matching.
翻译:在Bredereck等人[AAI 2020] 纯理论工作之后,我们为调整稳定的双向匹配以适应变化提供了进一步的理论见解。此外,我们还进行了广泛的经验研究,暗示了许多实际有用的属性。我们的理论扩展包括研究新问题(即几乎稳定的婚姻和住院住院居民的增量变异),侧重于新问题(即几乎稳定的婚姻和住院住院居民的增量变异)的计算复杂性和各种变化类型的等同性(因此简化了各种自然变化情景的算法和复杂理论研究 ) 。 我们的实验发现,比如,允许新匹配被几对夫妇阻断,大大缩小了旧和新稳定配对之间的必要差异。