We describe an algorithm that takes as an input a CW complex and returns a simplicial complex of the same homotopy type. This algorithm, although well-known in the literature, requires some work to make it computationally tractable. We pay close attention to weak simplicial approximation, which we implement for generalized barycentric and edgewise subdivisions. We also propose a new subdivision process, based on Delaunay complexes. In order to facilitate the computation of a simplicial approximation, we introduce a simplification step, based on edge contractions. We define a new version of simplicial mapping cone, which requires less simplices. Last, we illustrate the algorithm with the real projective spaces, the 3-dimensional lens spaces and the Grassmannian of 2-planes in $\mathbb{R}^4$.


翻译:我们描述一种算法,它将一个CW综合体作为输入,并返回一个同一同质类型的简化综合体。这种算法虽然在文献中广为人知,但需要做一些工作才能使它可以进行计算。我们密切注意微弱的简化近似,我们用它来进行普遍的野蛮和边缘分区。我们还提议了一个以Delaunay综合体为基础的新的分层过程。为了便于计算一个简化近似,我们引入了一个简化步骤,以边缘收缩为基础。我们定义了一种新型的简化绘图锥体,这需要更少的简化。最后,我们用真实的投影空间、三维透镜空间和以$\mathb{R}4$的二平面图的格拉斯曼人来说明算法。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
PRL导读-2018年120卷15期
中科院物理所
4+阅读 · 2018年4月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月17日
Arxiv
0+阅读 · 2022年2月16日
Arxiv
3+阅读 · 2017年12月1日
Arxiv
3+阅读 · 2017年6月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
PRL导读-2018年120卷15期
中科院物理所
4+阅读 · 2018年4月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员