We describe an algorithm that takes as an input a CW complex and returns a simplicial complex of the same homotopy type. This algorithm, although well-known in the literature, requires some work to make it computationally tractable. We pay close attention to weak simplicial approximation, which we implement for generalized barycentric and edgewise subdivisions. We also propose a new subdivision process, based on Delaunay complexes. In order to facilitate the computation of a simplicial approximation, we introduce a simplification step, based on edge contractions. We define a new version of simplicial mapping cone, which requires less simplices. Last, we illustrate the algorithm with the real projective spaces, the 3-dimensional lens spaces and the Grassmannian of 2-planes in $\mathbb{R}^4$.
翻译:我们描述一种算法,它将一个CW综合体作为输入,并返回一个同一同质类型的简化综合体。这种算法虽然在文献中广为人知,但需要做一些工作才能使它可以进行计算。我们密切注意微弱的简化近似,我们用它来进行普遍的野蛮和边缘分区。我们还提议了一个以Delaunay综合体为基础的新的分层过程。为了便于计算一个简化近似,我们引入了一个简化步骤,以边缘收缩为基础。我们定义了一种新型的简化绘图锥体,这需要更少的简化。最后,我们用真实的投影空间、三维透镜空间和以$\mathb{R}4$的二平面图的格拉斯曼人来说明算法。