We study a multi-leader single-follower congestion game where multiple users (leaders) choose one resource out of a set of resources and, after observing the realized loads, an adversary (single-follower) attacks the resources with maximum loads, causing additional costs for the leaders. For the resulting strategic game among the leaders, we show that pure Nash equilibria may fail to exist and therefore, we consider approximate equilibria instead. As our first main result, we show that the existence of a $K$-approximate equilibrium can always be guaranteed, where $K \approx 1.1974$ is the unique solution of a cubic polynomial equation. To this end, we give a polynomial time combinatorial algorithm which computes a $K$-approximate equilibrium. The factor $K$ is tight, meaning that there is an instance that does not admit an $\alpha$-approximate equilibrium for any $\alpha<K$. Thus $\alpha=K$ is the smallest possible value of $\alpha$ such that the existence of an $\alpha$-approximate equilibrium can be guaranteed for any instance of the considered game. Secondly, we focus on approximate equilibria of a given fixed instance. We show how to compute efficiently a best approximate equilibrium, that is, with smallest possible $\alpha$ among all $\alpha$-approximate equilibria of the given instance.
翻译:我们研究一个多领导者单行球拥堵游戏,在这个游戏中,多个用户(领导人)从一组资源中选择一种资源(K$-approx 1.1974美元),在观察了已实现的负负负后,对手(单身随行者)用最大负载攻击资源,给领导人造成额外费用。对于由此产生的领导人战略游戏,我们显示纯纳什平衡可能不存在,因此,我们考虑近似平衡。作为我们的第一个主要结果,我们显示一个美元-美元-美元接近平衡的存在总是可以保证的,在一组资源中,1美元\approx 1.1974美元是混合方程式独有的解决方案。为此,我们给出了一个混合时间组合算算法,计算出美元-近似平衡。一个系数是紧凑的,这意味着有一个不认可美元-alpha美元-abal-bal 美元 < K$ > 的任何正数。因此,美元-alpha=K$是美元-ablalalalalalalalalalalalalalalalalal等式中最小的可能价值。一个最小的值值,我们可以想象到一个固定的正正弦焦焦焦焦焦焦焦焦焦焦焦焦焦焦焦焦焦焦点是如何显示一个焦点是如何的焦点。