We study a multi-leader single-follower congestion game where multiple users (leaders) choose one resource out of a set of resources and, after observing the realized loads, an adversary (single-follower) attacks the resources with maximum loads, causing additional costs for the leaders. For the resulting strategic game among the leaders, we show that pure Nash equilibria may fail to exist and therefore, we consider approximate equilibria instead. As our first main result, we show that the existence of a $K$-approximate equilibrium can always be guaranteed, where $K \approx 1.1974$ is the unique solution of a cubic polynomial equation. To this end, we give a polynomial time combinatorial algorithm which computes a $K$-approximate equilibrium. The factor $K$ is tight, meaning that there is an instance that does not admit an $\alpha$-approximate equilibrium for any $\alpha<K$. Thus $\alpha=K$ is the smallest possible value of $\alpha$ such that the existence of an $\alpha$-approximate equilibrium can be guaranteed for any instance of the considered game. Secondly, we focus on approximate equilibria of a given fixed instance. We show how to compute efficiently a best approximate equilibrium, that is, with smallest possible $\alpha$ among all $\alpha$-approximate equilibria of the given instance.


翻译:我们研究一个多领导者单行球拥堵游戏,在这个游戏中,多个用户(领导人)从一组资源中选择一种资源(K$-approx 1.1974美元),在观察了已实现的负负负后,对手(单身随行者)用最大负载攻击资源,给领导人造成额外费用。对于由此产生的领导人战略游戏,我们显示纯纳什平衡可能不存在,因此,我们考虑近似平衡。作为我们的第一个主要结果,我们显示一个美元-美元-美元接近平衡的存在总是可以保证的,在一组资源中,1美元\approx 1.1974美元是混合方程式独有的解决方案。为此,我们给出了一个混合时间组合算算法,计算出美元-近似平衡。一个系数是紧凑的,这意味着有一个不认可美元-alpha美元-abal-bal 美元 < K$ > 的任何正数。因此,美元-alpha=K$是美元-ablalalalalalalalalalalalalalalalalal等式中最小的可能价值。一个最小的值值,我们可以想象到一个固定的正正弦焦焦焦焦焦焦焦焦焦焦焦焦焦焦焦焦焦焦点是如何显示一个焦点是如何的焦点。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
【CVPR2021】动态度量学习
专知会员服务
40+阅读 · 2021年3月30日
专知会员服务
51+阅读 · 2020年12月14日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Diganta Misra等人提出新激活函数Mish,在一些任务上超越RuLU
专知会员服务
15+阅读 · 2019年10月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月17日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关VIP内容
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
64+阅读 · 2021年8月20日
【CVPR2021】动态度量学习
专知会员服务
40+阅读 · 2021年3月30日
专知会员服务
51+阅读 · 2020年12月14日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Diganta Misra等人提出新激活函数Mish,在一些任务上超越RuLU
专知会员服务
15+阅读 · 2019年10月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员