Data collected by large-scale instruments, observatories, and sensor networks are key enablers of scientific discoveries in many disciplines. However, ensuring that these data can be accessed, integrated, and analyzed in a democratized and timely manner remains a challenge. In this article, we explore how state-of-the-art techniques for data discovery and access can be adapted to facility data and develop a conceptual framework for intelligent data access and discovery.


翻译:大型仪器、观测台和传感器网络收集的数据是许多学科科学发现的关键促成因素,然而,确保这些数据能够以民主化和及时的方式获得、整合和分析,仍是一项挑战,在本条中,我们探讨如何使最新的数据发现和获取技术适应设施数据,并为智能数据获取和发现制定概念框架。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2022年2月4日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员