We generated 25000 conversations labeled with Big Five Personality traits using prompt programming at GPT-3. Then we train Big Five classification models with these data and evaluate them with 2500 data from generated dialogues and real conversational datasets labeled in Big Five by human annotators. The results indicated that this approach is promising for creating effective training data. We then compare the performance by different training approaches and models. Our results suggest that using Adapter-Transformers and transfer learning from pre-trained RoBERTa sentiment analysis model will perform best with the generated data. Our best model obtained an accuracy of 0.71 in generated data and 0.65 in real datasets. Finally, we discuss this approach's potential limitations and confidence metric.
翻译:我们通过Prompt Programming和GPT-3生成了25000个带有大五人格特征标记的对话。然后,我们使用这些数据训练了大五分类模型,并使用2500个从生成对话和人工标注的实际对话数据集中得到的数据进行了评估。结果表明,这种方法用于创建有效的训练数据具有很大的潜力。随后,我们比较了不同训练方法和模型的性能。我们的研究结果表明,在使用生成数据时,适配器转换器和RoBERTa情感分析模型的迁移学习是最佳选择。我们的最佳模型在生成数据集中获得了0.71的准确率,在实际数据集中获得了0.65的准确率。最后,我们讨论了这种方法的潜在局限性和置信度指标。