Several problems in neuroimaging and beyond require inference on the parameters of multi-task sparse hierarchical regression models. Examples include M/EEG inverse problems, neural encoding models for task-based fMRI analyses, and temperature monitoring of climate or CPU and GPU. In these domains, both the model parameters to be inferred and the measurement noise may exhibit a complex spatio-temporal structure. Existing work either neglects the temporal structure or leads to computationally demanding inference schemes. Overcoming these limitations, we devise a novel flexible hierarchical Bayesian framework within which the spatio-temporal dynamics of model parameters and noise are modeled to have Kronecker product covariance structure. Inference in our framework is based on majorization-minimization optimization and has guaranteed convergence properties. Our highly efficient algorithms exploit the intrinsic Riemannian geometry of temporal autocovariance matrices. For stationary dynamics described by Toeplitz matrices, the theory of circulant embeddings is employed. We prove convex bounding properties and derive update rules of the resulting algorithms. On both synthetic and real neural data from M/EEG, we demonstrate that our methods lead to improved performance.
翻译:神经成像和超神经成像方面的若干问题要求就多任务分散的等级回归模型的参数作出推断,例如M/EEG反问题、基于任务FMRI分析的神经编码模型以及气候或CPU和GPU的温度监测。在这些领域,要推断的模型参数和测量噪音可能呈现复杂的时空结构。现有的工作要么忽视了时间结构,要么导致计算性要求的推论计划。克服了这些限制,我们设计了一个新型灵活的Bayesian等级框架,模型参数和噪音的时空动态在其中建模,以建模Kronecker产品共变异结构。我们的框架中的推论以主要化-最小化优化为基础,保证了趋同特性。我们高效的算法利用了时间自动自动变异矩阵固有的里曼几度。对于托普利茨矩阵所描述的固定动态,我们采用了循环嵌嵌入理论。我们证明对模型参数和噪动的特性进行了连接,并由此对结果的算法规则进行了更新。关于合成和真实性数据展示了我们的合成/真实性。