The effect of population heterogeneity in multi-agent learning is practically relevant but remains far from being well-understood. Motivated by this, we introduce a model of multi-population learning that allows for heterogeneous beliefs within each population and where agents respond to their beliefs via smooth fictitious play (SFP).We show that the system state -- a probability distribution over beliefs -- evolves according to a system of partial differential equations akin to the continuity equations that commonly desccribe transport phenomena in physical systems. We establish the convergence of SFP to Quantal Response Equilibria in different classes of games capturing both network competition as well as network coordination. We also prove that the beliefs will eventually homogenize in all network games. Although the initial belief heterogeneity disappears in the limit, we show that it plays a crucial role for equilibrium selection in the case of coordination games as it helps select highly desirable equilibria. Contrary, in the case of network competition, the resulting limit behavior is independent of the initialization of beliefs, even when the underlying game has many distinct Nash equilibria.


翻译:多试剂学习中的人口差异效应实际上具有相关性,但远未完全理解。为此,我们引入了多人口学习模式,允许每个人群中的不同信仰,让代理者通过平滑的虚构游戏(SFP)回应他们的信仰。我们显示,系统状态 -- -- 一种比信仰的概率分布 -- -- 正在根据一个局部差异方程式的系统演变,类似于物理系统中常见的消除运输现象的连续性方程式。我们建立了SFP与不同类别游戏的横向反应平衡的趋同,捕捉网络竞争和网络协调。我们还证明,这些信仰最终将在所有网络游戏中实现同质化。虽然最初的信仰差异性在极限中消失,但我们表明,在协调游戏中,它对于平衡选择平衡性起着关键作用,因为它有助于选择非常可取的平衡性。相反,在网络竞争中,由此产生的限制行为是独立于信仰初始化的,即使基本游戏有许多不同的纳什平衡性。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2022年10月10日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员