We present a methodology combining neural networks with physical principle constraints in the form of partial differential equations (PDEs). The approach allows to train neural networks while respecting the PDEs as a strong constraint in the optimisation as apposed to making them part of the loss function. The resulting models are discretised in space by the finite element method (FEM). The methodology applies to both stationary and transient as well as linear/nonlinear PDEs. We describe how the methodology can be implemented as an extension of the existing FEM framework FEniCS and its algorithmic differentiation tool dolfin-adjoint. Through series of examples we demonstrate capabilities of the approach to recover coefficients and missing PDE operators from observations. Further, the proposed method is compared with alternative methodologies, namely, physics informed neural networks and standard PDE-constrained optimisation. Finally, we demonstrate the method on a complex cardiac cell model problem using deep neural networks.
翻译:我们提出了一个方法,将神经网络与局部差异方程式(PDEs)形式的物理主理限制结合起来; 这种方法允许培训神经网络,同时尊重PDEs,将其作为优化的一个强大制约因素,因为优化是将其纳入损失功能的一部分; 由此形成的模型通过有限元素法(FEM)在空间中分离; 这种方法既适用于固定的,也适用于短暂的,也适用于线性/非线性PDEs; 我们描述了该方法如何作为现有FEM框架FENICS及其算法区分工具dolfin-adwork的延伸加以实施; 我们通过一系列实例展示了在观测中回收系数和缺失PDE操作者的方法的能力; 此外,将拟议方法与替代方法进行比较,即物理知情神经网络和标准PDE受限制的优化。 最后,我们用深神经网络演示了复杂心细胞模型问题的方法。