Variational Bayes (VB) inference algorithm is used widely to estimate both the parameters and the unobserved hidden variables in generative statistical models. The algorithm -- inspired by variational methods used in computational physics -- is iterative and can get easily stuck in local minima, even when classical techniques, such as deterministic annealing (DA), are used. We study a variational Bayes (VB) inference algorithm based on a non-traditional quantum annealing approach -- referred to as quantum annealing variational Bayes (QAVB) inference -- and show that there is indeed a quantum advantage to QAVB over its classical counterparts. In particular, we show that such better performance is rooted in key concepts from quantum mechanics: (i) the ground state of the Hamiltonian of a quantum system -- defined from the given variational Bayes (VB) problem -- corresponds to an optimal solution for the minimization problem of the variational free energy at very low temperatures; (ii) such a ground state can be achieved by a technique paralleling the quantum annealing process; and (iii) starting from this ground state, the optimal solution to the VB problem can be achieved by increasing the heat bath temperature to unity, and thereby avoiding local minima introduced by spontaneous symmetry breaking observed in classical physics based VB algorithms. We also show that the update equations of QAVB can be potentially implemented using $\lceil \log K \rceil$ qubits and $\mathcal{O} (K)$ operations per step. Thus, QAVB can match the time complexity of existing VB algorithms, while delivering higher performance.
翻译:变异贝雅( VB) 推断算法被广泛用于估算参数和基因统计模型中未观测到的隐藏变量。算法 -- -- 受计算物理中所用变异方法的启发 -- -- 是迭代的,可以很容易地卡在本地迷你模型中。我们研究的是基于非传统量子反射法的变异贝雅( VB) 推算法 -- -- 被称为量子反射计算法(QAVB) 变异变异计算法(QAVB) 推断 -- -- 表明QAVB相对于其古典对应方确实具有量优势。我们特别表明,这种更好的性能根植于量子机械学的关键概念:(一) 量子系统的汉密尔密尔顿的地面状态 -- -- 定义于给定的变异端贝贝( VB) 问题在非常低的温度下可以实现最小化; (二) 通过技术平行的量计算QQQ( QAVAVB) 运行过程;以及(三) 由此开始, 以最优的温度显示,从地面上显示, 变正轨方法可以实现的解。