Answer Set Programming (ASP) is a successful method for solving a range of real-world applications. Despite the availability of fast ASP solvers, computing answer sets demands a very large computational power, since the problem tackled is in the second level of the polynomial hierarchy. A speed-up in answer set computation may be attained, if the program can be split into two disjoint parts, bottom and top. Thus, the bottom part is evaluated independently of the top part, and the results of the bottom part evaluation are used to simplify the top part. Lifschitz and Turner have introduced the concept of a splitting set, i.e., a set of atoms that defines the splitting. In this paper, We show that the problem of computing a splitting set with some desirable properties can be reduced to a classic Search Problem and solved in polynomial time. This allows us to conduct experiments on the size of the splitting set in various programs and lead to an interesting discovery of a source of complication in stable model computation. We also show that for Head-Cycle-Free programs, the definition of splitting sets can be adjusted to allow splitting of a broader class of programs.


翻译:解答程序( ASP) 是解决一系列真实世界应用的成功方法 。 尽管有快速 ASP 解答器, 计算解答组需要非常大的计算能力, 因为所处理的问题是在多元等级的第二层。 如果程序可以分割成两个互不连的部位, 即底部和顶部, 可以实现快速解答计算。 因此, 底部部分是独立评估, 底部部分评估的结果被用来简化顶部部分 。 Lifschitz 和 Turner 引入了分解集的概念, 即一组确定分裂的原子。 在本文中, 我们显示, 计算带有某些理想属性的分解集的问题可以简化为典型的搜索问题, 并在多元时间中解答 。 这使得我们可以对各个程序中分解的大小进行实验, 并导致在稳定的模型计算中发现一个有趣的复杂来源 。 我们还显示, 对于头括号程序, 分解组的定义可以调整为更宽级程序。

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
165+阅读 · 2020年4月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2021年11月9日
Arxiv
0+阅读 · 2021年11月9日
Arxiv
0+阅读 · 2021年11月5日
Arxiv
4+阅读 · 2018年10月31日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
165+阅读 · 2020年4月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
相关论文
Arxiv
0+阅读 · 2021年11月9日
Arxiv
0+阅读 · 2021年11月9日
Arxiv
0+阅读 · 2021年11月5日
Arxiv
4+阅读 · 2018年10月31日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
3+阅读 · 2018年2月24日
Top
微信扫码咨询专知VIP会员