In many cases, it is difficult to generate highly accurate models for time series data using a known parametric model structure. In response, an increasing body of research focuses on using neural networks to model time series approximately. A common assumption in training neural networks on time series is that the errors at different time steps are uncorrelated. However, due to the temporality of the data, errors are actually autocorrelated in many cases, which makes such maximum likelihood estimation inaccurate. In this paper, we propose to learn the autocorrelation coefficient jointly with the model parameters in order to adjust for autocorrelated errors. For time series regression, large-scale experiments indicate that our method outperforms the Prais-Winsten method, especially when the autocorrelation is strong. Furthermore, we broaden our method to time series forecasting and apply it with various state-of-the-art models. Results across a wide range of real-world datasets show that our method enhances performance in almost all cases.


翻译:在许多情况下,很难用已知的参数模型结构为时间序列数据生成非常精确的模型。 作为回应,越来越多的研究侧重于使用神经网络来模拟时间序列。时间序列培训神经网络的一个共同假设是,不同时间步骤的错误与时间序列不相干。然而,由于数据的时间性,错误在很多情况下实际上与自动相关,这使得最大可能性估计不准确。在本文中,我们提议与模型参数一起学习自动关系系数,以适应与自动有关的错误。关于时间序列回归,大规模实验表明,我们的方法超过了Prais-Winsten方法,特别是当自动关系强烈时。此外,我们扩大了我们的方法,将时间序列预测扩大到各种最先进的模型中。各种真实世界数据集的结果显示,我们的方法几乎在所有情况下都会提高性能。

1
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员