Due to the limitation of data availability, traditional power load forecasting methods focus more on studying the load variation pattern and the influence of only a few factors such as temperature and holidays, which fail to reveal the inner mechanism of load variation. This paper breaks the limitation and collects 80 potential features from astronomy, geography, and society to study the complex nexus between power load variation and influence factors, based on which a short-term power load forecasting method is proposed. Case studies show that, compared with the state-of-the-art methods, the proposed method improves the forecasting accuracy by 33.0% to 34.7%. The forecasting result reveals that geographical features have the most significant impact on improving the load forecasting accuracy, in which temperature is the dominant feature. Astronomical features have more significant influence than social features and features related to the sun play an important role, which are obviously ignored in previous research. Saturday and Monday are the most important social features. Temperature, solar zenith angle, civil twilight duration, and lagged clear sky global horizontal irradiance have a V-shape relationship with power load, indicating that there exist balance points for them. Global horizontal irradiance is negatively related to power load.


翻译:由于数据可获性的限制,传统的电荷预测方法更侧重于研究负荷变异模式以及温度和节日等少数因素的影响,这些因素未能揭示载荷变异的内部机制。本文打破了限制,收集了天文学、地理和社会的80种潜在特征,以研究电荷变异和影响因素之间的复杂关系,并在此基础上提出了短期电荷预测方法。案例研究表明,与最先进的方法相比,拟议方法提高了预测准确性33.0%至34.7%。预测结果表明,地理特征对提高负荷预测准确性影响最大,而温度是其中的主要特征。天文特征比与太阳有关的社会特征和特征具有重要影响,而以前的研究显然忽视了这些特征。星期六和周一是最重要的社会特征。温度、太阳风度角度、民用两光亮度持续时间,以及天际全球水平辐照落后与电荷有着V-shape关系,表明存在平衡点。全球水平辐射辐射与负负负负负负负负负。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Arxiv
0+阅读 · 2021年5月18日
Arxiv
0+阅读 · 2021年5月14日
Arxiv
0+阅读 · 2021年5月13日
Arxiv
15+阅读 · 2021年2月19日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Deformable ConvNets v2: More Deformable, Better Results
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Top
微信扫码咨询专知VIP会员