Lack of encyclopedic text contributors, especially on Wikipedia, makes automated text generation for \emph{low resource (LR) languages} a critical problem. Existing work on Wikipedia text generation has focused on \emph{English only} where English reference articles are summarized to generate English Wikipedia pages. But, for low-resource languages, the scarcity of reference articles makes monolingual summarization ineffective in solving this problem. Hence, in this work, we propose \task{}, which is the task of cross-lingual multi-document summarization of text from multiple reference articles, written in various languages, to generate Wikipedia-style text. Accordingly, we contribute a benchmark dataset, \data{}, spanning $\sim$69K Wikipedia articles covering five domains and eight languages. We harness this dataset to train a two-stage system where the input is a set of citations and a section title and the output is a section-specific LR summary. The proposed system is based on a novel idea of neural unsupervised extractive summarization to coarsely identify salient information followed by a neural abstractive model to generate the section-specific text. Extensive experiments show that multi-domain training is better than the multi-lingual setup on average.


翻译:缺乏百科全书文本贡献者,尤其是在维基百科上,使得低资源语言的自动化文本生成成为了一个关键问题。现有的维基百科文本生成工作仅关注于仅有英文的文本生成,其中英文参考文章已经被总结成英文维基百科页面。但是,对于低资源语言,因为参考文章的稀缺性,单语言总结并不能有效地解决这个问题。因此,在这项工作中,我们提出了 \task{}。该任务是将来自不同语言的多个参考文章的跨语言多文档摘要生成类似于维基百科文本的任务。因此,我们贡献了一个基准数据集 \data{},跨度大约为 69K 维基百科文章,覆盖了五个领域和八种语言。我们利用这个数据集训练了一个具有两个阶段的系统,其中输入是一组引用和一个章节标题,输出是针对该特定章节的低资源摘要。所提出的系统基于一种新颖的神经无监督提取总结,以粗略地确定显着信息,然后使用神经抽象模型生成章节特定文本。广泛的实验表明,多领域培训比多语言设置平均更好。

0
下载
关闭预览

相关内容

维基百科( Wikipedia.org)是一个基于 Wiki 技术的全球性多语言百科全书协作项目,同时也是一部在网际网络上呈现的网络百科全书网站,其目标及宗旨是为全人类提供自由的百科全书。目前 Alexa 全球网站排名第六。
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
EMNLP 2022 | ClidSum: 跨语言对话摘要
PaperWeekly
3+阅读 · 2022年11月25日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
论文浅尝 | XQA:一个跨语言开放域问答数据集
开放知识图谱
25+阅读 · 2019年9月11日
上百份文字的检测与识别资源,包含数据集、code和paper
数据挖掘入门与实战
17+阅读 · 2017年12月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
资源:10份机器阅读理解数据集 | 论文集精选 #02
PaperWeekly
11+阅读 · 2017年9月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
49+阅读 · 2021年9月11日
Arxiv
31+阅读 · 2018年11月13日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
EMNLP 2022 | ClidSum: 跨语言对话摘要
PaperWeekly
3+阅读 · 2022年11月25日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
论文浅尝 | XQA:一个跨语言开放域问答数据集
开放知识图谱
25+阅读 · 2019年9月11日
上百份文字的检测与识别资源,包含数据集、code和paper
数据挖掘入门与实战
17+阅读 · 2017年12月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
资源:10份机器阅读理解数据集 | 论文集精选 #02
PaperWeekly
11+阅读 · 2017年9月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员