We study three instances of log-correlated processes on the interval: the logarithm of the Gaussian unitary ensemble (GUE) characteristic polynomial, the Gaussian log-correlated potential in presence of edge charges, and the Fractional Brownian motion with Hurst index $H \to 0$ (fBM0). In previous collaborations we obtained the probability distribution function (PDF) of the value of the global minimum (equivalently maximum) for the first two processes, using the {\it freezing-duality conjecture} (FDC). Here we study the PDF of the position of the maximum $x_m$ through its moments. Using replica, this requires calculating moments of the density of eigenvalues in the $\beta$-Jacobi ensemble. Using Jack polynomials we obtain an exact and explicit expression for both positive and negative integer moments for arbitrary $\beta >0$ and positive integer $n$ in terms of sums over partitions. For positive moments, this expression agrees with a very recent independent derivation by Mezzadri and Reynolds. We check our results against a contour integral formula derived recently by Borodin and Gorin (presented in the Appendix A from these authors). The duality necessary for the FDC to work is proved, and on our expressions, found to correspond to exchange of partitions with their dual. Performing the limit $n \to 0$ and to negative Dyson index $\beta \to -2$, we obtain the moments of $x_m$ and give explicit expressions for the lowest ones. Numerical checks for the GUE polynomials, performed independently by N. Simm, indicate encouraging agreement. Some results are also obtained for moments in Laguerre, Hermite-Gaussian, as well as circular and related ensembles. The correlations of the position and the value of the field at the minimum are also analyzed.


翻译:我们在此间隔里研究三例与日志相关的进程: Gausian 单元共和组合( GUE) 的对数( GUE) 特征为多元数, Gausian log-cor 潜在值存在边端电荷, 而Fractional Brown 运动与 Hurst 指数 $H\ to 0 (fBM0) 的对数( PDF) 。 在以前的协作中,我们获得了前两个进程全球最低值( 等值最大值) 的概率分布功能( PDF), 使用 prit olent- QQQQQQQQ) (FC) 。 在这里, 我们研究了 最高值的双数组合共值位置的 PDFDF( GUE) 的对数值的对数值的对数值对数值的对数值对数值的对数值对数( $x ) 。 在正数字段中, 这个表达方式与最近的汇率对数的数值对数的数值对数的数值对数 美元对数 。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月4日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Physical Primitive Decomposition
Arxiv
4+阅读 · 2018年9月13日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员