Video cameras are pervasively deployed in city scale for public good or community safety (i.e. traffic monitoring or suspected person tracking). However, analyzing large scale video feeds in real time is data intensive and poses severe challenges to network and computation systems today. We present CrossRoI, a resource-efficient system that enables real time video analytics at scale via harnessing the videos content associations and redundancy across a fleet of cameras. CrossRoI exploits the intrinsic physical correlations of cross-camera viewing fields to drastically reduce the communication and computation costs. CrossRoI removes the repentant appearances of same objects in multiple cameras without harming comprehensive coverage of the scene. CrossRoI operates in two phases - an offline phase to establish cross-camera correlations, and an efficient online phase for real time video inference. Experiments on real-world video feeds show that CrossRoI achieves 42% - 65% reduction for network overhead and 25% - 34% reduction for response delay in real time video analytics applications with more than 99% query accuracy, when compared to baseline methods. If integrated with SotA frame filtering systems, the performance gains of CrossRoI reach 50% - 80% (network overhead) and 33% - 61% (end-to-end delay).
翻译:在城市范围内,为了公众利益或社区安全(即交通监测或可疑人员跟踪),广泛部署在城市范围内的视频摄像机,在城市范围内,为了公众利益或社区安全(即交通监测或可疑人员跟踪),广泛部署在城市范围内。然而,实时分析大规模视频资料是数据密集的,对网络和计算系统构成严重挑战。我们展示了CrossRoI,这是一个资源效率高的系统,通过利用视频内容协会和一组摄影机的冗余,可以进行实时视频分析。CrossRoI利用交叉摄像场的内在物理关联,以大幅降低通信和计算成本。CrossRoI去除了多个相机中同一物体的回溯性外观,而不影响对现场的全面覆盖。CrosRoI分两个阶段运作,即建立跨相机关联的离线阶段,以及实时视频推断的高效在线阶段。在现实世界视频资料上进行的实验显示,CrosroRoI实现了42%-65%的网络间接费用减少,25%-34%的响应延迟,与基线方法相比,超过99%的查询精确度。如果与SotaramA过滤系统合并,则达到了51%的间接费用,则达到80%。