We study the classical Network Revenue Management (NRM) problem with accept/reject decisions and $T$ IID arrivals. We consider a distributional form where each arrival must fall under a finite number of possible categories, each with a deterministic resource consumption vector, but a random value distributed continuously over an interval. We develop an online algorithm that achieves $O(\log^2 T)$ regret under this model, with no further assumptions. We develop another online algorithm that achieves an improved $O(\log T)$ regret, with only a second-order growth assumption. To our knowledge, these are the first results achieving logarithmic-level regret in a continuous-distribution NRM model without further ``non-degeneracy'' assumptions. Our results are achieved via new techniques including: a new method of bounding myopic regret, a ``semi-fluid'' relaxation of the offline allocation, and an improved bound on the ``dual convergence''.
翻译:我们研究古典网络收入管理(NRM)问题,包括接受/拒绝决定和美元IID抵达。我们考虑一种分配形式,即每个抵达者必须属于一定数量的可能类别,每个类别都有确定的资源消费矢量,但随机值在一段时间内连续分配。我们开发了一种在线算法,在这个模式下,在没有进一步假设的情况下,实现1美元(log2 T)的遗憾。我们开发了另一种在线算法,实现了1美元(log T)的改善,只有第二顺序增长假设。据我们所知,这是在连续分配NRM模型中实现对数级遗憾的第一个结果,没有进一步的“非退化假设”。我们的成果是通过新的技术实现的,包括:一种约束近视遗憾的新方法,一种“semi-fluid”的离线分配松动,以及“dualbility”趋同。