Fake News on social media platforms has attracted a lot of attention in recent times, primarily for events related to politics (2016 US Presidential elections), healthcare (infodemic during COVID-19), to name a few. Various methods have been proposed for detecting Fake News. The approaches span from exploiting techniques related to network analysis, Natural Language Processing (NLP), and the usage of Graph Neural Networks (GNNs). In this work, we propose DEAP-FAKED, a knowleDgE grAPh FAKe nEws Detection framework for identifying Fake News. Our approach is a combination of the NLP -- where we encode the news content, and the GNN technique -- where we encode the Knowledge Graph (KG). A variety of these encodings provides a complementary advantage to our detector. We evaluate our framework using two publicly available datasets containing articles from domains such as politics, business, technology, and healthcare. As part of dataset pre-processing, we also remove the bias, such as the source of the articles, which could impact the performance of the models. DEAP-FAKED obtains an F1-score of 88% and 78% for the two datasets, which is an improvement of 21%, and 3% respectively, which shows the effectiveness of the approach.
翻译:社交媒体平台上的假消息最近引起了许多关注,主要涉及与政治(美国总统选举2016年)、医疗保健(COVID-19期间的信息)等相关的事件,等等。提出了发现假新闻的各种方法。这些方法包括利用网络分析、自然语言处理(NLP)和图像神经网络(GNNS)等相关技术。在这项工作中,我们建议DEAP-FAKED(一个识别假新闻的已知工具)FAKEWS检测框架,这是识别假新闻的原始数据。我们的方法是NLP(其中我们编码了新闻内容)和GNNNT技术(其中我们编码了知识图(KG))的组合。这些编码为我们的探测器提供了补充优势。我们用两个公开的数据集来评估我们的框架,其中含有政治、商业、技术和保健等领域的文章。作为预处理数据的一部分,我们还消除了偏见,例如文章的来源,这可能会影响模型的性能。DEAP-FAKED(D)和GNNT(其中我们编码了88%的数据获得了21 %的效能)。