Spatial summary statistics based on point process theory are widely used to quantify the spatial organization of cell populations in single-cell spatial proteomics data. Among these, Ripley's $K$ is a popular metric for assessing whether cells are spatially clustered or are randomly dispersed. However, the key assumption of spatial homogeneity is frequently violated in spatial proteomics data, leading to overestimates of cell clustering and colocalization. To address this, we propose a novel $K$-based method, termed \textit{KAMP} (\textbf{K} adjustment by \textbf{A}nalytical \textbf{M}oments of the \textbf{P}ermutation distribution), for quantifying the spatial organization of cells in spatial proteomics samples. \textit{KAMP} leverages background cells in each sample along with a new closed-form representation of the first and second moments of the permutation distribution of Ripley's $K$ to estimate an empirical null model. Our method is robust to inhomogeneity, computationally efficient even in large datasets, and provides approximate $p$-values for testing spatial clustering and colocalization. Methodological developments are motivated by a spatial proteomics study of 103 women with ovarian cancer, where our analysis using \textit{KAMP} shows a positive association between immune cell clustering and overall patient survival. Notably, we also find evidence that using $K$ without correcting for sample inhomogeneity may bias hazard ratio estimates in downstream analyses. \textit{KAMP} completes this analysis in just 5 minutes, compared to 538 minutes for the only competing method that adequately addresses inhomogeneity.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【普林斯顿博士论文】图机器学习,137页pdf
专知会员服务
40+阅读 · 5月1日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
145+阅读 · 2020年7月6日
专知会员服务
54+阅读 · 2020年3月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
基于深度元学习的因果推断新方法
图与推荐
11+阅读 · 2020年7月21日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
VIP会员
相关资讯
基于深度元学习的因果推断新方法
图与推荐
11+阅读 · 2020年7月21日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员