One of the most robust patterns found in human languages is Zipf's law of abbreviation, that is, the tendency of more frequent words to be shorter. Since Zipf's pioneering research, this law has been viewed as a manifestation of compression, i.e. the minimization of the length of forms - a universal principle of natural communication. Although the claim that languages are optimized has become trendy, attempts to measure the degree of optimization of languages have been rather scarce. Here we demonstrate that compression manifests itself in a wide sample of languages without exceptions, and independently of the unit of measurement. It is detectable for both word lengths in characters of written language as well as durations in time in spoken language. Moreover, to measure the degree of optimization, we derive a simple formula for a random baseline and present two scores that are dualy normalized, namely, they are normalized with respect to both the minimum and the random baseline. We analyze the theoretical and statistical advantages and disadvantages of these and other scores. Harnessing the best score, we quantify for the first time the degree of optimality of word lengths in languages. This indicates that languages are optimized to 62 or 67 percent on average (depending on the source) when word lengths are measured in characters, and to 65 percent on average when word lengths are measured in time. In general, spoken word durations are more optimized than written word lengths in characters. Beyond the analyses reported here, our work paves the way to measure the degree of optimality of the vocalizations or gestures of other species, and to compare them against written, spoken, or signed human languages.


翻译:在人文语言中发现的最稳健的模式之一是齐普夫的缩写法,即更频繁的单词倾向于缩短。自齐普夫的开创性研究以来,这项法律被视为压缩的表现,即尽量减少形式长度----一种普遍的自然交流原则。虽然语言优化的主张已变得潮流化,但衡量语言优化程度的尝试却相当稀少。在这里,我们证明压缩本身表现在广泛的语言样本中,没有例外,而且独立于计量单位。书面语言字符的字长度和口语时间长度都可探测到。此外,为了衡量优化程度,我们为随机基线制定了简单的公式,并提出了两个分数,即语言优化程度与最低基线和随机基线标准一致。我们分析了这些语言和其他分数的理论和统计优劣之处。我们首次量化书面文字长度的最佳程度,我们首次量化书面文字长度的程度,以及口语时间长度与口语时间长度的长度都可检测,在平均语言的正值或正值上,在平均页长度上,语言比平均的页长度为65或正值,在平均时间上,在平均的正度上,语言比正值为平均或正值的正值,在排序中,在排序中,在排序中,语言到正值为62%或正值中,比正值。在平均或正值的正值中,在平均的文字时间里度上,在平均比时间里,在平均的文字时间里为62%。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2010年12月31日
The Calibration Generalization Gap
Arxiv
0+阅读 · 2022年10月6日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员