Intense wildfires impact nature, humans, and society, causing catastrophic damage to property and the ecosystem, as well as the loss of life. Forecasting wildfire front propagation is essential in order to support fire fighting efforts and plan evacuations. The level set method has been widely used to analyze the change in surfaces, shapes, and boundaries. In particular, a signed distance function used in level set methods can readily be interpreted to represent complicated boundaries and their changes in time. While there is substantial literature on the level set method in wildfire applications, these implementations have relied on a heavily-parameterized formula for the rate of spread. These implementations have not typically considered uncertainty quantification or incorporated data-driven learning. Here, we present a Bayesian spatio-temporal dynamic model based on level sets, which can be utilized for forecasting the boundary of interest in the presence of uncertain data and lack of knowledge about the boundary velocity. The methodology relies on both a mechanistically-motivated dynamic model for level sets and a stochastic spatio-temporal dynamic model for the front velocity. We show the effectiveness of our method via simulation and with forecasting the fire front boundary evolution of two classic California megafires - the 2017-2018 Thomas fire and the 2017 Haypress.
翻译:强烈的野火影响自然、人类和社会,对财产和生态系统造成灾难性的破坏,以及生命损失。预测野火前沿传播对于支持消防努力和计划疏散至关重要。 水平设定方法已被广泛用于分析表面、形状和边界的变化。 特别是,在水平设定方法中使用的经签署的距离功能很容易被解释为代表复杂的边界及其时间变化。 虽然野火应用中有大量关于定水平方法的文献,但这些执行依赖一个高度平衡的传播速度公式。这些执行通常不考虑不确定性量化或纳入数据驱动的学习。在这里,我们展示了一种基于水平设置的巴耶西亚时空洞动态模型,可用于在存在不确定的数据和缺乏关于边界速度的知识的情况下预测利益界限。该方法依赖于一个具有机械动机的级集动态模型,以及一个用于前方速度的对空间动态模型进行随机测试。我们通过模拟和两次空间- 20- 20 BARM BAR 系统模拟和预测了我们的方法前方空间- 201717 BAR 的模拟和两次空间- 我们展示了我们的方法的有效性。