In this paper, we address the problem of quantifying uncertainty about the locations of multiple change points. We first establish the asymptotic distribution of the change point estimators obtained as the local maximisers of moving sum statistics, where the limit distributions differ depending on whether the corresponding size of changes is local, i.e. tends to zero as the sample size increases, or fixed. Then, we propose a bootstrap procedure for confidence interval generation which adapts to the unknown size of changes and guarantees asymptotic validity both for local and fixed changes. Simulation studies show good performance of the proposed bootstrap procedure, and we provide some discussions about how it can be extended to serially dependent errors.
翻译:在本文中,我们处理对多个变更点位置的不确定性进行量化的问题。 我们首先确定作为移动总和统计的当地最大标准而获得的变更点估计值的无症状分布, 其限制分布因相应的变化规模是局部的, 即随着抽样规模的增加或固定, 往往为零而有所不同。 然后, 我们提出一个用于产生信任间隔的靴子程序, 以适应变化的未知规模, 并保证本地和固定变化的无症状有效性。 模拟研究显示, 拟议的“ 靴套” 程序表现良好, 我们提供一些关于如何将其扩展至序列误差的讨论 。