This paper is devoted to the development and convergence analysis of greedy reconstruction algorithms based on the strategy presented in [Y. Maday and J. Salomon, Joint Proceedings of the 48th IEEE Conference on Decision and Control and the 28th Chinese Control Conference, 2009, pp. 375--379]. These procedures allow the design of a sequence of control functions that ease the identification of unknown operators in nonlinear dynamical systems. The original strategy of greedy reconstruction algorithms is based on an offline/online decomposition of the reconstruction process and an ansatz for the unknown operator obtained by an a priori chosen set of linearly independent matrices. In the previous work [S. Buchwald, G. Ciaramella and J. Salomon, SIAM J. Control Optim., 59(6), pp. 4511-4537], convergence results were obtained in the case of linear identification problems. We tackle here the more general case of nonlinear systems. More precisely, we introduce a new greedy algorithm based on the linearized system. Then, we show that the controls obtained with this new algorithm lead to the local convergence of the classical Gauss-Newton method applied to the online nonlinear identification problem. We then extend this result to the controls obtained on nonlinear systems where a local convergence result is also proved. The main convergence results are obtained for the reconstruction of drift operators in dynamical systems with linear and bilinear control structures.
翻译:暂无翻译